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Abstract 
This study investigated the scope and constraints for integrated use of mechanistic 
crop growth simulation models and earth observation techniques. Integration of high-
quality crop growth models and information derived from earth observations can 
contribute to improved use of resources, reduced crop production risks, reduced 
environmental degradation, and increased farm income. In the past, both, simulation 
modelling and remote sensing have been shown to be valuable tools in separate 
applications in agriculture. Crop growth simulation has made valuable contributions to 
yield forecasting, proto-typing crop varieties, generation of input-output coefficients 
for improved agricultural production technologies and to management decision 
support systems at field level. Likewise, remote sensing techniques have been 
successfully applied in classification of arable crops and in quantification of vegetation 
characteristics at different spatial and temporal scales. The starting point of this study 
was the hypothesis that integration of both techniques would lead to improvements in 
the dynamic simulation of the crop-soil system and thus contribute to improvements in 
management decision support systems for environmentally sound agricultural 
production. 
Thus far, mutually beneficial linkages have been limited to land use classification via 
remote sensing (choice of adequate model) and quantification of crop growth and 
development curves using e.g. estimates of leaf area indices derived from remote 
sensing images for model calibration under (usually) favourable growth conditions. 
Only a few studies have considered the potentials of remote sensing for model 
initialization of growth and development characteristics of a specific crop. In this thesis 
these potentials have been extended to a more continuous approach, in which remote 
sensing information is not only used in model initialization, but also in model 
calibration in the course of the simulation run, so-called run-time calibration. During 
such a run-time calibration procedure, simulated values of e.g. leaf area index (LAI) 
and canopy nitrogen status (CNS) are replaced by values estimated from remote 
sensing images acquired at different stages in the course of the growing period. LAI 
and CNS are important controlling variables in models for arable crops such as wheat, 
potato and maize. This run-time calibration procedure has been performed for a full 
crop growth cycle, for optimal as well as sub-optimal growth conditions. This 
approach enables spatial differentiation in crop growth simulation, as variations in crop 
status, resulting from differences in growth conditions, lead to differences in remote 
sensing signals. The relationships between near and remote sensing observations at 
leaf, plant and canopy level have been investigated and the effects of variations in 
estimated values of LAI and CNS used in run-time calibration of dynamic crop growth 
simulation models on final model results (e.g. crop yield) have been analyzed. 
Results from potato trials in the Netherlands show that leaf nitrogen contents derived 
from near sensing observations can be up-scaled to plant and canopy nitrogen status 
by taking into account the vertical nitrogen distribution in the crop. A vertical nitrogen 
extinction coefficient (kN) of 0.41 resulted in an accuracy increase of the relation 
between leaf nitrogen (g N m-2 leaf) and SPAD readings (a near sensing technique at 
leaf level), with a correlation coefficient (r2) of 0.91. Remote sensing observations 



integrate nitrogen contents over canopy depth and do not require adjustment for 
vertical nitrogen gradients, if canopy nitrogen status is expressed in total nitrogen 
content per unit of soil surface. The red edge position (an index derived from remote 
sensing observations) could be related to canopy nitrogen content (g N m-2 soil) with a 
correlation coefficient (r2) of 0.82. Leaf area indices of potato (Netherlands) and maize 
(Argentina, France, USA) crops, for use in run-time calibration, were also accurately 
derived from field, airborne and spaceborne remote sensing platforms. Introducing 
LAI values derived from RS in the simulation model and concurrently adjusting CNS 
by retaining leaf N-concentrations, led to more accurate simulation results for CNS 
than without such adjustment. The different crops, and the range in environmental 
conditions, soil fertility status and management practices that were examined in the 
different case-studies in this thesis, have demonstrated the broad applicability of 
mechanistic simulation models integrated with remote sensing information  
Winter wheat fields, wheat phenological stages (emergence, flowering) and 
management operations (harvest) were successfully identified on the basis of 
information from optical and radar remote sensing data in a case-study in South-
eastern France. Timing of these phenological stages and management operations is 
important in model calibration as they mark the length of the crop growth period and 
of the grain-filling period, which are co-determinants of grain yield. At flowering, C-
band radar backscatter from the soil is maximally reduced by canopy moisture content. 
This characteristic was successfully used to estimate regional wheat flowering dates. 
Integration of RS data in the (point-based) crop growth simulation model allowed its 
spatial application for prediction of wheat production at regional scale. The estimated 
value was in agreement with regional yield statistics. This integration thus allows 
expansion of the application area of valuable research tools, as up-scaling has become 
feasible. 
Introduction of remote sensing-based estimates of LAI and CNS in the course of the 
growing seasons into dynamic simulation of the growth of potato and maize resulted in 
improved simulation accuracy for aerial crop characteristics, as well as for variables that 
could not be directly observed by remote sensing, such as soil inorganic nitrogen 
contents. The degree of success and robustness of the integrated approach depends on 
the timing, accuracy and number of remote sensing observations available for re-
setting the relevant state variables in the course of the simulation period. Simulation 
accuracy was positively correlated with the number of observation dates from remote 
sensing. Remote sensing observations around flowering had more impact on calculated 
final grain yield (FGY) for maize than earlier or later observations. 
The investigations reported in this thesis have shown that the accuracy of predictions 
of dynamic and mechanistic crop growth simulation models significantly improves 
through integrating earth observation-derived information as input for the models and 
for their run-time calibration. Such integration not only yields more accurate estimates 
of crop bio-physical variables, such as leaf area index and canopy nitrogen status, but 
also contributes to improved prediction at regional scales. Such models, producing 
reliable, site-specific predictions of crop performance and crop requirements are thus 
effective tools in the development of environmentally-friendly production methods 
and in optimizing the use of our natural resources. 



 

Further research should focus on the scope for estimating additional crop variables of 
interest for integration in simulation modelling through remote sensing. Management 
interventions may be triggered by various crop characteristics, such as: 1) canopy 
temperatures derived from thermal remote sensing systems as an indicator for water 
stress, 2) canopy discolouring derived from optical remote sensing systems as an 
indicator for nutrient shortages and 3) canopy architecture derived from radar remote 
sensing images as an indicator for water and nutrient supply. Remote sensing is also a 
valuable technique to identify spatial patterns of crop performance and crop status 
within arable fields. Moreover, remote sensing allows identification of patterns that 
may be related to specific diseases or special events, such as outbreaks of phytophtera 
in potato, or lodging in grain crops. 
This study has demonstrated that a decision support system for crop and soil 
management based on the integration of crop growth simulation modelling and 
remotely sensed data is within reach. In addition, nitrogen uptake, its vertical 
distribution within the crop, and the inorganic nitrogen content of the soil can be 
simulated more accurately with such an integrated system. Such a decision support 
system can be used for fine-tuning of fertilizer regimes thus contributing to more 
environmentally sound and sustained agricultural production. 
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Chapter 1 

General introduction 
 
 

1.1 Justification and needs to improve resource 

use efficiency in farming systems 
To improve the livelihoods for millions of people, the member states of the United 
Nations committed themselves in the year 2000 to eight quantifiable Millennium 
Development Goals (MDGs) that should be reached in 2015 (World Bank, 2000). 
With 70 percent of the MDGs’ target group living in rural areas, most immediate gains 
in poor households’ welfare may be achieved through agriculture. While the linkage 
with agriculture is especially strong for the first MDG (eradicating poverty and 
hunger), all MDGs have direct or indirect linkages with agriculture. As acknowledged 
in MDG7 (ensure environmental sustainability), agricultural practices can be both 
direct causes of, and important solutions to environmental degradation. Without 
doubt, this not only holds for poor rural areas in less developed countries, but also for 
agriculture in developed countries. 
Resource use efficiency is of permanent concern to modern society. Governed by 
economic incentives and environmental awareness, scarce and thus expensive 
resources are used more and more efficiently. If resources are not limited however, 
danger of excessive use remains, leading to inefficiency, higher costs and possibly 
environmental pollution. Risk-avoidance strategies e.g., may lead to undesired side 
effects and degradation of the environment, such as pollution and soil fertility 
deterioration.  
In the last decades it has been shown that modern agriculture with high-inputs is no 
exception to these economic rules. Arable and dairy farming may contribute to 
contamination of ground- and surface water (Langeveld et al., 2005), and intensive 
animal husbandry faces problems of outbreaks of contagious diseases. The awareness 
of the negative side effects of agricultural practices on the environment has clearly 
grown over the years. In arable farming, solutions to the problems created by these 
side effects are sought in fine-tuning management practices, for instance through 
optimizing the match between crop nutrient demand and nutrient supply. Fine-tuning 
management practices on the basis of crop demands increases resource use efficiency 
and reduces risks of negative side-effects. To operationalize such principles, 
methodologies are needed to establish crop demand, for instance on the basis of crop-
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soil status. New technologies, such as field sensors and remote sensors provide 
information that may have added value to conventional ways of crop-soil monitoring. 
In agricultural research, eco-physiological processes in soils and crops are studied to 
unravel the complexities of underlying principles as a basis for identification of 
solutions to the negative side effects of mismanagment. The use of crop growth 
simulation models enables timely and quantitative prediction of the dynamics of crop 
requirements for a specific location (ten Berge et al., 1997). Further improvements in 
fine-tuning management practices can be achieved by assessing the spatial variation in 
the crop growth environment as a basis for spatial fine-tuning of crop management. 
Applying this concept to a single field is known as precision agriculture (PA). The 
concept of PA illustrates that agricultural management is in need of geo-referenced 
information that can be generated through new techniques, such as remote sensing 
(RS) or through conventional measurement techniques in combination with a 
geographical positioning system (GPS) (van Alphen, 2002). 
Availability of temporal and spatial information might provide detailed information for 
guiding management aimed at efficient use of inputs and prevention of environmental 
pollution or degradation. Remote sensing observations, acquired in the course of the 
growing season, can assist in assessing variability in crop performance and provide 
information of, and for, management interference. Technological developments, such 
as automated application equipment for fertilizers, irrigation and phyto-sanitary 
products make it possible to vary management within a field. Crop management could 
thus be improved on the basis of information generated through combining dynamic 
crop growth simulation with temporal remotely sensed information. In addition to 
applications in high-input farming, this method of linking crop growth simulation 
models to spatial remote sensing information has potential in low-input arable farming. 
Where resources are scarce or unavailable (e.g. in rainfed agriculture in West Africa or 
in the extensive rangelands in South America), this technique can contribute to early 
warning systems (EWS), or improve the results of risk analysis studies to assess food 
security. 
Linking dynamic crop growth simulation models to spatial information provides a 
possibility to extend the use of an advanced and sophisticated research and advisory 
tool, originally developed for point-specific analyses, to larger areas. 
Remote sensing information can be used to calibrate simulation models in data-scarce 
environments, and/or to increase simulation accuracy (e.g. for yield forecasting), by 
forcing observed values on the model in the course of the simulation period. This 
generates questions on how this can be technically achieved, what the requirements are 
for the spatial information (or what impact can be expected if these requirements are 
not met), and what the likely benefits would be. 
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1.2 Opportunities for integrating simulation 

modelling and remote sensing techniques 
There is a need for methodology development with respect to the integration of soil 
and crop processes (as incorporated in simulation models), expert knowledge and 
observations from sensing techniques, to more adequately understand and respond to 
crop performance. Many new sensing techniques have been developed in recent years, 
to collect information on crop and soil systems (by remote sensing in various spectral 
bands, laser-induced fluorescence, radar, etc.). As the remotely or near sensed 
information is a representation of the actual soil-crop status, it is difficult to identify 
instantaneously which process(es) is (are) responsible for the observed crop and soil 
conditions. Identification of these processes is needed in order to select the most 
appropriate intervention through management. For such selection, one-time remote 
sensing observations are hard to interpret without additional information on crop 
and/or soil status. Multitemporal (or continuous) and multispectral measurements 
might improve the possibilities for identification of the relevant processes, if reliable 
methods are available for processing and interpretation of the observations. To 
maximize the possibilities for identification of appropriate management, the use of 
process simulation models is, where possible, linked to sensed information and the 
benefits of this integration are explored and discussed in this thesis. 
Although remote sensing and crop growth simulation modelling each has proven its 
usefulness and applicability in various areas, such uses have in principle been 
separately, and not in combination. The challenge of showing synergy through 
generation of supplemental and more accurate information by integrating the two 
methodologies is taken up here. The methods of integrating remote sensing and 
simulation modelling are plentiful, however, as will become clear. 
 
1. Remote sensing techniques can be used in calibration and validation procedures 

through supply of input data for spatial applications of crop growth simulation 
models. Important model state variables such as aboveground biomass, leaf area 
index and specific canopy characteristics, such as chlorophyll or nitrogen contents, 
can be estimated from remote sensing observations and can therefore be used for 
calibration and validation purposes. 

2. Phenological events such as emergence, flowering and maturity (followed by crop 
harvest) are difficult to predict and in general are not accurately enough 
represented in simulation models (Porter et al., 1993). Timing of these events has, 
however, a strong impact on crop performance and yield, both in reality and in 
simulation models. Remote sensing information allows identification of the timing 
of those events, which can be used to adjust simulation models. 

3. Discrepancies between actual crop performance and simulation results may occur 
for various reasons: crop growth and soil processes can be wrongly interpreted or 
wrongly modelled or absent, and/or input data may be inaccurate or missing. 
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Unpredictable events that are not explicitly included in the simulation model, may 
lead to inaccurate simulation results. Natural catastrophes (i.e. hailstorms and 
flooding), or the occurrence of pests and diseases may significantly influence crop 
performance, but these events are hardly ever included in simulation models, as 
their occurrence is erratic. Furthermore, natural interference (such as grazing on 
pastures) may not be erratic, but will affect crop status. Remote sensing 
information of the crop-soil system allows identification of the occurrence of such 
events and their effects can be used to re-initialize and re-direct a model at various 
stages during run-time. Such a re-initialization will lead to more accurate 
simulation results, as will be shown in this study. 

4. Remote sensing images also allows spatial differentiation of areas that, without 
such information, appear homogeneous (and are treated as such). The spatial and 
temporal differentiation in remote sensing information permits application of crop 
growth simulation models at smaller spatial scales, e.g. at sub-field level. Remote 
sensing images show spatial variability in reflection characteristics, due to 
variability in crop conditions, caused by heterogeneous environmental conditions. 
Application of crop growth simulation models at the level of sub-fields allows 
differentiating crop management at that scale. This may result in reduced waste of 
resources and/or reduced risk of environmental pollution. 

5. Alternatively, a reverse pathway can be followed. Crop growth simulation models 
may provide information to support interpretation of remote sensing data. 
Interpretation of the results of complex, process-based simulation models may on 
the one hand benefit from remote sensing imagery, and on the other hand, where 
remote sensing images are missing, model-derived information on soil and crop 
temporal and spatial variability may prove useful to fill observation gaps. Estimates 
of the dynamics of soil characteristics such as soil moisture content and crop 
characteristics (i.e. biomass, leaf area index, canopy structure and chlorophyll 
contents) can be provided by simulation models. This feature has great potential in 
filling in missing remote sensing data due to unfavourable climatic conditions, such 
as clouds or due to technical problems. Remote sensing data can be emulated by 
constructing remote sensing signals from results of crop growth simulation 
models.  

 
In the late 1980s, a method has been developed at the DLO Institute for Agrobiology 
and Soil Fertility Research (AB-DLO) in Wageningen, to integrate crop growth 
simulation models and remote sensing data for calculating production potentials of a 
number of crops in the Netherlands (Bouman, 1991). The method is based on 
estimating light interception and reflection characteristics of a green canopy, on the 
basis of simulated phenological development and biomass accumulation. Remotely 
sensed data are used to correct simulated values to improve yield forecasts. Van 
Leeuwen (1996) tested this method using airborne and satellite remote sensing data, 
and with emphasis on radar and optical measurements for sugar beet and winter wheat. 
He found that simple semi-empirical remote sensing models are more suitable for 
observations at canopy level than more complex models, especially for optimal 
growing conditions. 
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As this thesis aims at formulation of recommendations for improved crop 
management to increase resource use efficiency, the approach should be geared 
towards areas with sub-optimal growing conditions. Crop management based on a 
sophisticated decision support system could help to reduce negative side-effects of 
arable farming practices, as soil and crop processes may be sources of the observed 
variability in reflection characteristics.  
Under sub-optimal growth conditions (i.e. imbalance in nutrient and water demand 
and supply), the interactions between soil and crop processes, that are unimportant 
under non-limiting growth conditions, play major roles in determining crop 
performance. Refining the method is the more relevant because of recent 
developments in designing decision support systems for precision agriculture. 
Therefore, remotely sensed and geo-referenced information needs to be interpreted 
appropriately to undertake necessary action. Booltink et al. (1996) already described a 
decision support system that incorporates simulation of crop growth and nutrient 
fluxes being fed by multisensor observations and weather generators. A new 
methodology would substantially extend and enhance such a decision support system, 
by introducing spatial variability patterns. 
If a crop is suffering from e.g. moisture stress, canopy reflection will increase. 
Reflection signals in different spectral bands can be combined to calculate Vegetation 
Indices (VI) that can be directly related to vegetation characteristics. Jordan (1969) and 
Rouse et al. (1973) were the first to explore the application of VI for agricultural 
purposes. VI values change with crop development and when unfavourable conditions 
are causing stress. In this thesis, VI are mainly used for monitoring those crop and soil 
characteristics that are main drivers in dynamic crop growth simulation models, such as 
leaf area index (LAI), aboveground biomass, chlorophyll and/or nitrogen contents. 
Nitrogen stress affects leaf colour and the vertical nitrogen profile in a crop and 
reduces light interception, and as a result crop production (Bindraban, 1999; Dreccer, 
1999). Changes in leaf colour can be detected by sensor techniques, using optical 
remote sensing methods. Additional sensor methods to determine e.g. soil moisture 
and soil organic matter contents may be derived at the same moment to extend the 
information on the crop and soil system. Testing and application of this methodology 
could provide important information in process simulation models for crop and soil 
dynamics. 
Application of the principles explained above, aims at the development of an 
integrated model for application at regional and field level, for purposes such as crop 
growth monitoring (CGM), management decision support (MDS) (e.g. precision 
agriculture) and yield forecasting. 
To integrate multisensor, multitemporal measurements and crop growth simulation 
models in moisture- and nutrient-limiting situations, technical specifications should be 
implemented in a software application. This application should enable execution of a 
simulation model in a 2-dimensional grid, with possibilities to reset the model with 
values retrieved from remote sensing. A sophisticated simulation model should be used 
because of the high level of detail in soil and crop process simulation. For the 
simulation model to benefit from the sensor data, it is essential that the model 
sufficiently accurately simulates those crop and soil variables with the largest influence 
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on the remote sensing signal. As the recorded sensor signal is associated with 
differences in specific crop and soil characteristics, in this context, leaf area index, leaf 
chlorophyll contents and leaf water contents are the most important crop features. 
Leaf area index and leaf chlorophyll contents are the main drivers in a large number of 
simulation models that are applied at field level, as they determine radiation 
interception capacity and radiation use efficiency. In addition to the model variables 
that are linked directly to the sensor information, additional variables should be 
simulated that are associated with risk assessment and environmental pollution, 
associated with water and nutrient flows. Methodologies to explore the options for 
integrated approaches are investigated and analyzed in order to contribute to the 
realization of the objectives. 
In conclusion, integration of remote sensing information and crop growth simulation 
modelling shows great potential in contributing to the general objectives of increased 
resource use efficiency, risk avoidance, the prevention of environmental degradation 
and improved farming practices. A number of integration configurations are explored 
and examined to reveal the accuracy, trade-off and costs of the configurations. 
 

1.3 Objectives 
Integrating remote sensing and simulation modelling in this thesis has the following 
objectives: 
• To derive values of important crop state variables from various remote sensing data 

and link these with field measurements 
• To technically integrate important crop state variables derived from remote sensing 

time-series in dynamic simulation models in order to increase simulation accuracy 
• To define the requirements for successful implementation and identify situations 

where this new integrated technique shows promising results, and to illustrate the 
effect of timing and accuracies of the remote sensing observations 

• To apply point-based simulation models at a spatial scale, based on remote sensing 
observations 

• Eventually improve resource use efficiency, avoid production risks and prevent 
environmental degradation by arable farming practices 

 
The methodology and backgrounds described above lead to compilation of the 
following hypotheses, which will be examined in various case studies at spatial scales 
ranging from a sub-field to a region: 
1. Under sub-optimal production conditions, soil and crop processes that cause the 

production limitations can be identified through the integration of multi-sensor 
and multi-temporal measurements and simulation models. 

2. Using numerical, spatially and temporarily distributed values of selected variables 
obtained through remote sensing techniques improves the dynamic simulation of 
the crop-soil system. The required complexity of the variable integration methods 
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depends on the crop production level: simple for potential growth conditions to 
more complex for sub-optimal growth conditions. 

3. Multi-sensor and multi-temporal observations linked to dynamic modelling 
improve management decision support systems for environmentally sound 
agricultural production. 

 

1.4 Synopsis 
Chapter 1 contains the justification for the current study and describes its societal 
significance. Chapter 2 presents the background and state-of-the-art of remote sensing 
and dynamic crop growth simulation applications in agriculture. Chapter 3 deals with 
the application of a point-based simulation model for regional yield estimates via the 
use of remote sensing images. Chapter 4 presents and discusses derivation of 
biophysical variables from near and remote sensing observations, with emphasis on the 
relation between leaf, plant and canopy nitrogen status. In Chapter 5, the practical 
integration and run-time calibration of remotely sensed information into a dynamic 
simulation model and the consequences for simulation accuracy are presented and 
discussed. In Chapter 6, the effect of variability in leaf aera index (LAI) and crop 
nitrogen status (CNS) used in run-time calibration of a mechanistic and dynamic crop 
growth simulation model is analyzed. In Chapter 7 follows the general discussion and 
summary of the results. 
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Chapter 2 

Integrating crop growth simulation modelling 
and remote sensing for agriculture 
 
 

2.1 Introduction 
Information technologies, such as simulation modelling and remote sensing, have, 
from their inception, played important roles in agricultural research and in agricultural 
production systems. Since that moment, substantial technical progress has been made 
in both, simulation modelling and remote sensing, which still continues, due to the 
increasing possibilities in computer hard- and software and technological progress, 
combined with greater knowledge on modelled and observed systems.  
Originally in isolation, crop growth simulation and remote sensing methodologies have 
played significant, but different roles in agricultural applications. For crop growth 
simulation modelling, the interest has predominantly been in yield forecasting of 
different cropping systems and the use of resources for crop growth, such as radiation, 
water and nutrients (van Ittersum et al., 2003a). For remote sensing, applications in 
agriculture have focused traditionally on classification themes, but quantification of 
yields and biophysical crop properties has become more and more important.  
There are similarities between crop growth simulation modelling and remote sensing as 
well: since their introduction, both techniques have always been advocated because of 
their large potentials, but a relatively small fraction of these potentials has led to actual 
applications. Although the number of actual applications is still quite impressive, there 
are numerous unused potential applications for both methodologies. The reasons for 
the limited applications are at the same time the reasons for their success: the rapid 
technological progress makes applications rapidly outdated, as new chances and 
opportunities appear at the horizon, even before the potentials of an application have 
been fully realized. The ability to rapidly adapt to changing demands, induced either 
through technological developments or through socio-economic developments, 
increases the possibilities for sustainable application of crop growth modelling and 
remote sensing. 
It is hypothesized in this study that added value is generated through combining crop 
growth modelling and remote sensing. Acquired benefits are important if they 
contribute to improved resource use efficiency, reduced production risks and reduced 
environmental impact of agricultural activities. To successfully realize this integration, 
both methodologies will have to be merged seamlessly. The needs, conditions and 
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requirements for such a successful integration, will be analyzed and presented in the 
following chapters. 
The crops considered, the two technologies, their development and applications in 
agriculture and agricultural research are treated first, followed by a description of some 
examples of successful combinations of simulation modelling and remote sensing in 
research and in applications. Subsequently, the approaches are identified having 
priority in integration for study objectives, as well as the necessary steps to successfully 
attain the integration. As the potential number of applications in simulation modelling 
and remote sensing is large, a well-founded choice is made to focus on those types of 
simulation models and remote sensing applications that are expected to contribute the 
most to study objectives. 
 

2.2 Crops  
The arable crops addressed in this thesis are potato (Solanum tuberosum L.), wheat 
(Triticum aestivum L.) and maize (Zea mays L.). These crops are of interest because they 
are grown world-wide and have been intensively studied. Food security for many 
people depends on these crops, and silage maize is an important component in the 
ration of large numbers of farm animals. The global extent of cultivation of these crops 
implies a large variation in environmental and social settings, including sub-optimal 
agro-ecological conditions and/or situations prone to environmental degradation due 
to mismanagement. Crop improvements and specific crop management are based on 
decades of agricultural research aiming at optimization of crop production and 
associated goals. The use of dynamic crop growth simulation modelling has played a 
substantial role in prototyping crop varieties and optimizing management practices in 
different environmental and social settings. 
Potato, wheat and maize have well-pronounced characteristics that are of interest for 
remote sensing applications. Their growing period is characterized by a distinct pattern 
of phenological development (i.e. the order and rate of appearance of vegetative and 
reproductive organs), starting from emergence, i.e. the appearance of the growing 
point above the soil surface, followed by gradual coverage of the soil by canopy 
biomass, and ending at harvest with an abrupt change from canopy cover to bare soil. 
Crop growth is characterized by an increase in biomass, of which the aboveground part 
can be observed through optical remote sensing, especially through infrared channels. 
The quantity of water contained in the aerial biomass increases with increasing 
aboveground crop biomass, until ripening sets in (wheat, maize) or until the leaves start 
senescing or are removed (potato). The spatial arrangement of water (as reflected in 
canopy structure) of the aboveground crop organs can be observed through radar 
remote sensing at an appropriate wavelength. Differences in canopy structure, 
characterized by leaf angle distribution and leaf sizes, shapes, allow spectrally 
differentiating among crops. The grains (wheat, maize) are characterized by long erect 
stems and ears with grains (for wheat in the top layer of the canopy) and erectophile 
small (wheat) or large (maize) leaves. Potato is characterized by a well-pronounced 
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structure at the beginning of the growth cycle, but loses that structure in the course of 
the growth cycle, when stems collapse under the weight of the canopy. In wheat, stems 
may collapse due to nitrogen overdressing (lodging). Canopy structure can be 
decisively influenced by extreme weather, such as (hail) storms and frost. Total uptake 
of nutrients, specifically nitrogen, in potato, wheat and maize affects canopy colour, as 
nitrogen is part of the (green) chlorophyll that is responsible for the photosynthesis 
process. Higher concentrations of chlorophyll lead to increased ‘greenness’ of crop 
tissue; the chlorophyll concentration in the crop is characterized by a vertical gradient, 
reflecting the light intensity distribution in the crop. The seasonal patterns of 
chlorophyll concentration in potato, wheat and maize allow the use of optical remote 
sensing equipment for quantification of canopy nitrogen status that may be included in 
decision support systems for crop management. A number of these features will be 
explored in the following chapters of this thesis. The crops considered in this study 
show a strong differentiation in biomass, nutrient uptake and leaf area index 
development, resulting from differences in physiological processes and temporal 
development. If the integration of simulation modelling and remote sensing can be 
succesfully demonstrated for the 3 crops, it is to be expected that the methodology can 
be extrapolated to other crops as well. 
 

2.3 Crop growth simulation modelling 
Crop growth simulation modelling may serve many purposes and can be performed to 
attain a broad range of objectives. A range of models (varying in structure, 
mathematical formulation and degree of detail) may aim at achieving one single 
objective, each claiming to provide the solution for a specific problem. 
Simulation modelling comprises consistent quantitative integration of knowledge with 
respect to complex (bio) systems. The basis for simulation modelling in the systems 
approach is the mathematical description of system processes that are linked through 
physical, physiological and biochemical laws. Insight in individual system processes and 
their interactions is needed to understand system functioning. Therefore, simulation 
models are developed to organize and quantitatively describe these processes and 
relations in a systematic way. Models contain mathematical descriptions of physical, 
physiological and biochemical basic processes, either empirical or explanatory, but the 
aggregated result is a model that is a quantitative explanatory representation of the 
system under study. As such, all assumptions, inputs and results are made explicit and 
quantified, which allows to make them subject of discussion (Metselaar, 1999). 
The increase in process knowledge and the concurrent improvements in computer 
technology have led to the development of increasingly complicated models of 
complex systems, such as the crop-soil system. Increased insight in individual 
processes allows more accurate quantitative descriptions that gain value in a systems 
approach where they are integrated to provide quantitative descriptions (models) of the 
functioning of the system as a whole. Such models allow explanation of observed 
phenomena from insight in the underlying processes. A systems approach enables 



Chapter 2 

12 

analysis of effects at higher integration levels, caused by influences at process levels. 
This feature is exploited in dynamic crop growth simulation models by analyzing, 
predicting and exploring the dynamics of crop growth as affected by environmental 
conditions. Such crop growth simulation models can thus be applied to analyze the 
effects of crop and soil management with or without climate change or extreme events 
on crop performance as the basis for the design of sustainable crop production 
systems, necessary to guarantee food security and sustained use of our resources for 
the next generations. 
 
 

2.3.1 History 

As one of the first, de Wit (1965) used a ‘computer model’ for explaining crop 
performance, which was followed in the late 1960s by the initiation of formal crop 
growth simulation (Brennan et al., 1970; de Wit et al., 1970). In the years that followed, 
the ‘School of De Wit’ developed increasingly complex dynamic simulation models, 
such as ELCROS and BACROS, evolving to a simple and universal model (SUCROS), 
of which the basic approaches are still valued to this day (Bouman et al., 1996a; van 
Laar et al., 1997; van Ittersum et al., 2003b). One of the important developments 
associated with modelling of crop growth was encouragement of multidisciplinary 
research through system approaches, as interdisciplinary communication between 
different biophysical disciplines was an absolute necessity to develop these models. In 
that sense, simulation models still play an important role in knowledge transfer, 
training, education and decision-support systems (Donatelli et al., 2002a). 
Different problems at different scales call for different levels of model complexity. If 
potential biomass production is a key issue, for example, it is not necessary to use 
complex simulation models with details on photosynthesis processes or management 
interactions with soil characteristics and soil organic matter dynamics. It then suffices 
to convert intercepted radiation via potential radiation use efficiency into biomass 
production. If more detail is needed on stomatal behaviour and heat transfer of a 
specific crop variety under different management scenarios in order to understand 
remote sensing signals, much more complex models are needed. 
Greater model complexity and greater degree of detail in model processes require 
more, more detailed and more accurate input data, which by definition are more 
difficult to obtain. Greater model complexity however, is not a guarantee for good and 
accurate model performance. On the one hand, chances of introducing uncertainty 
increase with the use of more complex mathematical functions and with the increase in 
number of input parameters, as each estimated or measured parameter value will 
comprise a certain error. On the other hand, systematic bias increases when (over) 
simplified models represent more complex situations. Passioura (1996) has discussed 
the effect of error development for situations where system structures are well 
understood (Figure 2.1a) and where systems are wrongly interpreted (Figure 2.1b).  
Additionally, measuring large numbers of input parameters contributes to making 
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Figure 2.1 Components of prediction error in models of increasing complexity: a) when the structure of the 

system is well understood; b) when the structure is wrong, with irreducible structural error 
represented by the dashed asymptote. (After: Reynolds and Acock, 1985). 

 
 
models more site-specific, limiting their applicability to local situations, and hampering 
their portability to other (environmental) conditions. At the same time, spatial 
variability of (especially soil) input parameters is disregarded if results are to be applied 
to whole plots. The uncertainty propagation of errors introduced in input parameters 
should not be neglected, but is often underestimated. Awareness of these aspects of 
simulation of ecosystems has led to the development of simple so-called summary 
models that are applied successfully (e.g. Penning de Vries, 1982; Spitters, 1990). 
Global, regional and landscape modelling benefit from the general nature of process 
models with the precision and predictive power of empirical models (Korzukhin et al., 
1996). The aspect of selecting the appropriate complexity level for a specific problem 
should be recognized at all stages in the systems approach and will be discussed 
extensively. 
In addition to a large number of well-known and published crop growth simulation 
models (cf. Donatelli et al., 2002b), an even larger number of half-products, clones and 
replicas exists. Far too often such models are used only once, for local definition of 
input parameters to control the biotic and abiotic feedback systems. The majority of 
simulation models is poorly documented and has little value for re-use and verification, 
violating an important base rule of reliable science. Models are regularly applied in 
settings for which they were not developed, without the necessary and documented 
calibration and validation procedures. Hence, the limitations specified during their 
development are ignored. Operation of simulation models requires expert knowledge 
and specific interpretative skills, which make sharing and re-use of simulation models 
and modules a tough challenge. The development of modelling frameworks, in which 
models and modules are linked, even if originating from various sources and written in 
different programming languages, increases the re-usability of research results, while 
the model components retain their original structure. Such modelling frameworks 
generally incorporate tools for easy interpretation and visualisation of simulation 
results (e.g. Acock et al., 1999; Hillyer et al., 2003). These developments have to be 
encouraged, as they serve the scientific community by open-source approaches and 
standard requirements for model use.  

    a b
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2.3.2 Model types 

Crop growth simulation models can be grouped in various ways. A popular 
classification is that in descriptive, statistical and mechanistic models. Descriptive and 
statistical models mimic growth patterns, using statistics or fitted curves of observed 
values to reproduce growth patterns under similar circumstances. These types of 
models are not of interest here, although the mechanistic simulation models advocated 
here, do take advantage of growth statistics and growth descriptions by using empirical 
relations to simulate basic processes. 
For all dynamic simulation models it should be decided what integration time-step is 
best (or optimal). Optimal time-step size depends on base process rates in the 
simulation model (Leffelaar, 1993), and process reaction time to environmental change 
(which is scale-dependent). As a leading rule, reaction time to system interference 
should be taken as a time-step. System interference can be of natural nature (such as 
weather characteristics) and human nature (such as by management practices). 
In mechanistic crop models an environmental system is initialized, after which the 
simulated pools are depleted and/or replenished at rates calculated according to the 
laws of physics and biochemistry under the influence of environmental forces. Well-
defined, mechanistic models are based on insights in the underlying processes and are 
therefore more appropriate for system approach analyses and research. 
Most common mechanistic crop growth simulation models are canopy functioning 
models. In such dynamic simulation models, a crop emerges in dependence of environ-
mental conditions following sowing or planting and starts to intercept incoming 
radiation by its developing green area. The fraction absorbed photosynthetically active 
radiation (ƒAPAR, -) determines the proportion of incident photosynthetically active 
radiation (PAR, MJ m-2) available for conversion into biomass. Net primary production 
(NPP, g m-2) can be calculated by multiplying absorbed radiation (MJ m-2) by radiation 
use efficiency (RUEn, g MJ-1). Gross primary production (GPP, g m-2), the net result of 
carboxylation and photorespiration is more related to light absorption than NPP, as 
NPP also includes autotrophic respiration terms and C3 and C4 biochemical pathways 
differ in this aspect (Goetz and Prince, 1999). Monteith (1972) suggested that RUE is 
stable across species and Field (1991) demonstrated the convergence of net RUE 
across vegetation types, but later studies have shown significant variation in net RUE 
among crops. Thus, net RUE varies among crops and crop varieties, but is more 
stable with location and/or crop management. Crop location determines available 
growth resources, such as incoming radiation, temperature and precipitation. Soil 
characteristics modified by management co-determine the availability of these 
resources for crop growth. 
Simple and more complex mechanistic models exist, ranging from RUE-based models 
(with a single parameter for the conversion of intercepted radiation into biomass (cf. 
DSSAT (Porter and Jones, 1998)), to comprehensive models that include detailed 
descriptions of photosynthesis processes, such as introduced by Farquhar et al. (1980). 
In the latter type, photosynthesis, maintenance and growth respiration processes are 
simulated explicitly (such as in the models SUCROS (van Laar et al., 1997), WOFOST 
(Supit et al., 1994), and some crop modules in APSIM (McCown et al., 1996). There is a 
clear distinction in modelling approach between canopy functioning models and so-
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called SVAT-models (soil-vegetation-atmospheric-transfer). SVAT-models are based 
on functions quantitatively describing transfers over crop and soil boundaries and over 
crop internal boundary layers. Time-steps are typically less than a day (minutes or 
seconds), as reaction times of incorporated processes are of that order of magnitude. 
Simulation pools should therefore be integrated with the calculated process rates 
(Leffelaar, 1993). In both model types, moisture and nutrient stress may hamper crop 
growth and development, but they use different methodological approaches to account 
for these effects. The reason for the interest in using SVAT-models, in combination 
with remote sensing is that SVAT-models use energy balances and are therefore easily 
integrated with remote sensing information. In general, input requirements for SVAT-
models are higher, and they are more difficult to upscale from plant to canopy, and 
larger scales. 
Usually, mechanistic crop growth simulation models are executed with a time-step of 1 
day, but weekly, ten-day, monthly and annual time-steps are also applied. Ultimately, the 
simulation time-step is determined by the process rates that are important for the study 
objectives. For example, if accurate estimation of nitrogen leaching is important, all 
processes that affect nitrogen leaching should be considered: precipitation, minerali-
zation and nitrogen uptake. In that situation, time-steps of 1 day (or less) are required. 
In general, simulation scale is highly correlated with time-step: small time-steps for the 
simulation of small areas, such as points and (sub) plots, to larger time-steps for larger 
scales, such as landscape, region or continent. Some input parameters are easily esta-
blished at small scales, while at larger scales they can not be established at all (Wopereis, 
1993). Moving up to larger spatial scales requires generalisation of simulation models, at 
higher levels of integration, different types of inputs and larger time-steps. 
As crop growth interacts with its environment, (simple or complex) soil water and 
nutrient modules are added to the crop growth module. A soil water module comprises 
the water fluxes, such as precipitation, irrigation, evaporation, transpiration, and 
vertical or lateral drainage. A soil nutrient module describes nutrient fluxes, such as 
organic and inorganic fertilizer application, wet and dry deposition of nutrients, build-
up and decomposition of organic matter pools, nutrient uptake and leaching. From 
applications in scientific research, where environmental conditions are either fully 
controlled or continuously monitored, and their main aim was contributing to 
increased insight in crop functioning, crop growth simulation modelling has moved 
towards applications in crop management. Management modules may be part of 
simulation models to describe management interactions with the crop-soil system, in 
order to contribute to development of decision support systems. 
Crop functioning models find their applications for a range of objectives, such as 
prediction of the onset of the growing season, prediction of crop emergence, 
prediction of crop nitrogen demand, yield forecasting and assessing the impact of 
climatic change. The here advertised system approach integrates important processes 
and enables to identify where to interact with the system if necessary. 
Functional modelling and good modelling practice imply focusing only on those soil 
and crop processes considered relevant in solving of a well-defined problem. 
Identification of ‘relevant processes’ is not only guided by crop and soil requirements, 
but also by socio-economic circumstances. In this study, identification of the relevant 
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processes was guided by the requirement to incorporate those processes that easily 
interact with remote sensing observations. The main objectives for model use and 
applications are related to generation of support for crop-, soil- and site-specific crop 
management. The simulation models PlantSys and Rotask 1.5, both based on Rotask 1.0 
(Jongschaap, 1996) and built upon the approaches of the ‘School of De Wit’ simulation 
models (van Ittersum et al., 2003b) have been selected for use in dynamic integration 
with remote sensing information.  
 
 

2.3.3 Model applications in agriculture 

From model applications in agriculture, a limited number of them are geared towards 
yield prediction based on the farmers’ environment (crops, soils and climate) and 
possible management interactions. Such simulation models are used as components in 
Decision Support Systems (DSS) to guide crop management, such as for nitrogen 
fertilizer recommendations (Acock et al., 1999; Booij and Meurs, 2002; van Delden et 
al., 2002; Flowers et al., 2003) or irrigation (Bergez et al., 2001). Keating and McCown 
(2001) concluded that the real challenges of model applications in agriculture lay in the 
interface of ‘hard’ scientific approaches to the analysis of biophysical systems and ‘soft’ 
approaches to intervention in social management systems, both for commercial 
farming and for small subsistence farming systems.  
The Crop Growth Monitoring System (CGMS) developed in the project Monitoring of 
Agriculture with Remote Sensing (MARS) that started in 1988, provides the European 
Commission (DG Agriculture) with objective, timely and quantitative yield forecasts at 
regional and national scale. CGMS predicts crop development, growth and yield in 
Europe, driven by meteorological conditions modified by soil characteristics and crop 
parameters. This mechanistic approach describes crop phenological development and 
dry matter accumulation, partitioned into the various organs (roots, leaves, stems and 
storage organs) from sowing to maturity with a daily time-step. The main characteristic 
of CGMS is its spatial component, integrating interpolated meteorological data, 
whereas soil and crop parameters are obtained through elementary mapping units for 
simulation in the crop model. The core of the system is based on the crop growth 
model WOFOST (Supit et al., 1994) and the grass growth model LINGRA (Bouman et 
al., 1996b). GIS tools are used to prepare input data and to produce output maps. 
Input and output are stored in a Relational Data Base Management System (RDBMS). 
Statistical procedures are used to forecast crop yields. 
 

2.4 Remote sensing 
The chronological development or history of the use of remote sensing from platforms 
that fly or orbit above the Earth’s surface is shortly introduced based on the Remote 
Sensing Tutorial (NASA, 2004) and Remote Sensing in History (NASA, 1995-1998). 
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Different remote sensing observation methods and successful applications in 
agriculture will be highlighted. 
 
 

2.4.1 History 

Remote sensing as a technology started with the first aerial photographs taken from a 
balloon over Paris in the middle of the 19th century. Photography has served as a prime 
remote sensor for more than 150 years. It found major military applications in World 
War I. From then on, until the early 1960s, aerial photography remained the single 
standard tool for depicting the surface of the earth from a vertical perspective 
(Figure 2.2). 
In the 1930s radar (RAdio Detection And Ranging) technologies were developed in 
Germany. In World War II, a range of imaging systems, such as near-infrared 
photography, thermal sensing and radar were explored. Near-infrared photography and 
thermal-infrared observations appeared valuable in distinguishing real vegetation from 
camouflage. 
In the 1950s, remote sensing systems continued to evolve from the systems developed 
for the war effort. Colour Infrared Photography (CIR) was found to be very useful in 
the plant sciences. In 1956, experiments were conducted on the use of CIR for 
recognition and classification of vegetation types and for detection of diseased and 
damaged or stressed vegetation. Also in the 1950s, significant progress was made in 
radar technology, with the development of two new radar types, side-looking airborne 
radar (SLAR) and Synthetic Aperture Radar (SAR). Both developments aimed at 
acquisition of images at the highest possible resolution. 
Remote sensing above the atmosphere started early in the space age with the launch of 
Sputnik I by the Soviet Union in 1957, the start of the space race between the USA and 
 
 

 
Figure 2.2 From left to right: Caricature of Gaspard Felix Tournachon in ‘Le Boulevard’ (1860), early 

aerial photography: Boston photographed from a balloon (James Wallace Black in 1859), 
mounting pigeons with cameras (1903) and oblique photographs taken out of an aeroplane 44 
(1909 and today). Source: NASA (1995-1998). 
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the USSR. The Sputnik launch led directly to the creation of the National Aeronautics 
and Space Administration (NASA) in 1958, and further explorations from space 
followed. Russian missile deployments, such as those of the Cuba crisis and monitoring 
of new missile sites have been successfully performed by remote sensing. In the 1960s, 
as man entered space, cosmonauts and astronauts in space capsules took photos from 
the window. In the course of the 1960s, the first sophisticated imaging sensors were 
incorporated in orbiting satellites. At first, these sensors were basic television cameras 
that imaged crude, low-resolution black and white pictures of clouds and the earth’s 
surface (TIROS: Television Infrared Observation Satellite). Subsequently, other types 
of sensors were developed that took images using the electromagnetic (EM) spectrum 
beyond the visible, into the near and thermal infrared regions. The field of view (FOV) 
was broad, usually hundreds of kilometres to one side. Such synoptic areas of regional 
coverage were of great value to meteorologists, collecting information on clouds, air 
temperatures, wind patterns, etc. A significant advance in sensor technology was the 
subdivision of spectral ranges of radiation into bands (intervals of continuous 
wavelengths), allowing sensors in several bands to form multispectral images. 
The first multispectral photographs came from the manned Apollo 9 mission in 1968. 
Various specialists, particularly geologists, hydrologists, agronomists, forestry 
specialists and scientists dealing with environmental monitoring and land use/cover 
assessment rapidly recognized the value of multispectral photography. In 1970, the 
TIROS programme was renamed into NOAA (National Oceanic and Atmospheric 
Administration), financed by the US Administration. Until today, the NOAA 
Advanced Very High Resolution Radiometer (AVHRR) is orbiting the globe and 
collecting information on weather patterns in visible, near-infrared and thermal 
wavelengths. 
In 1972, the first civilian satellite remote sensor was launched, ERTS1 (Earth 
Resources Technology Satellite, later in 1975 renamed into Landsat-1). This satellite 
has played an important role in increasing our understanding of many of the earth’s 
features. The French followed the American efforts in 1986 with the launch of SPOT-
1, followed by India with IRS-1a in 1988, and Japan with JERS1 and JERS2 in 1990. 
The European Space Agency launched ERS-1 in 1991. In the meantime, successors to 
Landsat, SPOT and ERS satellites have been launched.  
In the same period, Imaging Spectroscopy (IS) went through a revolutionary phase and 
became available for remote sensing applications (van der Meer and de Jong, 2001). 
Imaging Spectroscopy provides a continuum of many narrow spectral bands in the 
visible, near infrared and mid infrared which reveal individual absorption bands of 
biochemical components and water in vegetation and soil. The development of IS 
enabled to look more specifically at vegetation (composition) and the possibility for 
‘finger printing’ soil and vegetation by their specific hyperspectral signatures (Goetz et 
al., 1985). Examples of such systems are the Digital Airborne Imaging Spectrometer 
(DAIS) and Airborne Visible Infrared Imaging Spectrometer (AVIRIS). 
The first of a new generation of commercial high-resolution remote sensing satellites 
became operational when Space Imaging launched its Ikonos satellite in 1999. With 1-
meter panchromatic and 4-meter multispectral sensors and the capacity to be tasked at 
specific optimal times, Ikonos provides options for a variety of applications. With 
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Figure 2.3 Depiction of ozone gas concentrations projected on the Earth’s surface, with the low ozone 

concentrations around the south pole. Source: NASA (1995-1998). 

 
 
Ikonos and similar systems, such as Quickbird, spaceborn remote sensing approaches 
the quality of airborne photography. 
In 2002, the European Space Agency launched Envisat, an advanced polar-orbiting 
Earth observation satellite that provides images of the atmosphere, ocean, land, and 
ice, ensuring the continuity of ERS satellite measurements. 
Chronologically, some of the interesting records of mayor events ‘observed’ by remote 
sensing are presented, such as the discovery of the hole in the ozone layer (Figure 2.3): 
data derived from satellite information led to the internationally agreed 50 % reduction 
in the use of chlorofluorocarbons (CFCs). In 1986, satellite remote sensing monitored 
the radioactive effects of the world’s largest nuclear disaster in Chernobyl, Russia. 
Now, remote sensing is considered an important component in emergency detection, 
not only for natural disasters, such as volcano eruptions, forest fires and hurricanes, 
but also for human-induced catastrophes, such as deforestation and environmental 
pollution. 
In Europe, an important and succesful development in remote sensing was supported 
by the European Commission, who, as a control mechanism for agriculture subsidies 
in the European Union, applied RS at large scale in their member states. As a result of 
the monitoring system that covered Europe, ineligible subsidy claims could be 
recovered and potential new fraud could be reduced (Boogaard et al., 2002). 
 
 

2.4.2 Remote sensing types 

Observations from remote sensors can be classified in several ways. Two methods of 
classification are presented here, to answer the question: what exactly are we looking 
at? The type of information that can be retrieved from remote sensing information and 
the degree to which it can be quantified are important issues in the current study. The 
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first classification is based on the electromagnetic spectrum, as the electromagnetic 
range of the sensor determines the type of information that can be retrieved from 
recorded signals. The second classification is based on the sensor’s operational 
platform, in other words: how and from where can the sensor be operated? The use of 
a specific platform is determined by other factors than technical factors alone, but has 
specific consequences for the information that is retrieved. 
 
 

Spectra 

Looking at the electromagnetic spectrum (Figure 2.4), a classical and logical method to 
categorise remote sensors presents itself. Each part of the electromagnetic spectrum is 
absorbed, transmitted and reflected differentially by materials of different origin 
and/or different texture. This feature forms the physical basis for remote sensing 
observations and is pertinent for the present study. 
Optical remote sensors are the sensors operating between 0.3 μm and 15 μm and 
cover the wavelengths that can be reflected and refracted with lenses and mirrors. The 
visible domain is located between the ultraviolet (ending at ≈ 400 nm) and the infrared 
(starting at ≈ 800 nm), and consists by definition of the registration domain of the 
human eye. Atmospheric effects on signal transmittance can be substantial in particular 
wavelength (Figure 2.5). Unless the atmosphere itself is studied, using these absorption 
features of the atmosphere should be avoided when studying the earth’s surface. This 
should be realized by selecting the appropriate bandwidths for observations. 
At some wavelengths, radiation energy is absorbed and thus ‘blocked’ for remote 
sensing, but there are clear windows through which electromagnetic waves can 
penetrate more easily in the atmosphere. The absorption peaks (or transmittance 
minima) can be assigned to specific components of the atmosphere, such as water 
absorption at 1.4 and 1.9 μm. A longer pathway through the atmosphere results in 
lower radiation energy at the receiving end, restricting the possibilities to record strong 
 
 

 
Figure 2.4 Electromagnetic spectrum (source: Kaiser, 2005). 



Crop growth simulation and remote sensing for agriculture 

21 

200 μm0.3 0.6 1.0 5.0 10 50 10m100 1mm 1cm 1m

m
icr

ow
av

es

blocking effect of atmosphere

at
m

os
ph

er
ic

 tr
an

sm
itt

an
ce

UV NI
R

MI
R

MI
R

TI
R TI
R

VI
S

wavelength
0.0

1.0

 
Figure 2.5 Relative transmittance of electromagnetic energy through the atmosphere (cf. Lillesand and Kiefer, 

2000). The white area is the solar spectrum (as received at the Earth’s surface) and the black 
area is the blocking effect (absorption) by the atmosphere. UV=ultraviolet, VIS=Visible, 
NIR=Near InfraRed, MIR=Middle InfraRed, TIR=Thermal InfraRed. 

 
signals. Note that atmospheric absorption is nearly absent in the microwave domain 
(Figure 2.5). Due to longer wavelengths, radar beams are not absorbed in the 
atmosphere and thus retain their energy status. This feature enables radar beams to 
penetrate through clouds at longer wavelengths and penetrate more deeply into 
vegetation and soil. The selected radar wavelength controls the penetration depth and 
thus the size of objects that can be detected (Table 2.1). 
Radar remote sensors can be sub-divided into passive and active radar systems. Active 
radar systems have their own transmitter: radar beams emitted first are received after 
interfering with objects. The change in intensity between the emitted and the received 
signal enables identification and quantification of the objects interfering with the radar 
beams. Passive radar sensors pick up energy signals transmitted naturally by objects. 
 

Platforms 
Remote sensors may operate on diverse platforms (or stages), i.e. spaceborne, airborne 
of field-based. It is useful to make this specific distinction among sensors, because it is  
 

Table 2.1 Radar bands: names and wavelengths (Source: Evans, 1995). 

Band Wavelength (cm) 

Ka 0.75 - 1.13 
K 1.13 - 1.67 
Ku 1.67 - 2.40 
X 2.40 - 3.75 
C 3.75 - 7.50 
S 7.50 - 15.00 
L 15.00 - 30.00 
P 30.00 - 100.00 
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a factor in determining their success in agricultural applications. Although sensor 
resolution may be part of its specifications, the platform (or distance from the earth’s 
surface) on which it is operated also influences the resolution of the observed objects 
(observation scale). This observation scale determines the possible degree of 
interference with the observed objects. 
Furthermore, sensor platform selection affects the image pre-processing procedures 
(and time). The further the platform is from the earth’s surface, the more procedures 
are necessary to correct the signals geographically and atmospherically. Radiometric 
corrections are needed as well, but these are not platform-dependent. With the use of 
microcomputers, the cost of image processing has greatly decreased, while the quality 
of the output is superior to that of older methods.  
 
Geographical corrections include corrections for skew: the effect due to rotation of the 
earth, and hence the ground target that continuously moves below the advancing 
sensor. The space (or air) craft also moves, and various corrections may be needed for 
observations deviating from the vertical direction. If pixel images are off-nadir 
(oblique), they are elongated, the degree depending on the observation angle, which 
should be corrected. Recording platform movements is a pre-requisite for airborne and 
spaceborn sensors. Once the various corrections have been implemented, the result is 
usually a shift in position of any given pixel in its new framework. 
Atmospheric corrections can be necessary due to a variety of natural causes. For 
example, the presence of water vapour influences radiation transmission. Measured 
intensity values for a specific target thus vary with different climatic conditions, for 
which remote sensing observations can be corrected. 
Radiometric corrections may be needed for variations in detector response and 
electronic perturbations. Most common are systematic differences in sensors, such as 
random noise (speckling). ‘Standardized’ computer-based procedures are available to 
implement all these corrections, improving overall image quality. Instrumental 
correction is generally done onboard, as it is a relatively easy process compared to 
geographical and atmospheric corrections that are performed mostly on the ground. 
 
The three stages considered in this study are: 
a) Ground-based stages (e.g. hand-held sensors, sensors mounted on static 

platforms or on mobile ones), 
b) Airborne platforms (e.g. unmanned or manned aeroplanes, balloons, zeppelins, 

etc.), and  
c) Spaceborne platforms (satellites). 
 
Ground-based stages are relatively cheap and can record signals at high spectral 
resolution, high geographical resolution and high temporal resolution (to the user’s 
needs), but generate point measurements. With the aid of a Geographical Positioning 
System (GPS) and spatial statistics such as Kriging, spatial distributions can be 
obtained from these point measurements. Airborne applications are relatively more 
expensive (flight costs), but may be performed at high geographical resolution (varying 
altitude). An advantage of airborne and spaceborne sensors is that they can cover larger 
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spatial scales. A disadvantage of spaceborne stages is that their multispectral sensors 
are often broad-banded (and not always in the appropriate electromagnetic domain), 
and hyperspectral sensors are not common (yet). Moreover, their temporal resolution 
(observation frequency) is problematic, as the satellite orbit rate, which especially for 
multispectral and hyperspectral sensors is relatively low, determines observation 
frequency. Additionally, climatic conditions (in the optical domain) may hamper 
observations at the right time, which may result in lack of information in support of 
management decisions on the ground. Pre-processing times of airborne and satellite 
images are relatively long due to geographical, atmospheric and radiometric 
corrections. 
 
 

2.4.3 Remote sensing applications in agriculture 

It has been shown that remote sensing can provide important information on 
agricultural environments. At the scale of leaves, plants, sub-fields, fields, regions, and 
at global scales, efforts have been made to retrieve useful information in support of a 
variety of activities. These activities comprise retrieving leaf and plant biochemical 
composition, plant (health) status, crop (health) status, regional and global estimates of 
vegetation cover (including arable crops) in order to improve farm management and to 
support local, regional or higher scale policy makers. Table 2.2 summarizes successful 
studies (with references) at different scales, including information on sensor techniques 
and application scale. 
The majority of vegetation characteristics that can be retrieved from remote sensing 
and that are useful in agriculture settings is derived from so-called vegetation indices 
(VI). Vegetation indices are derived from combinations of measurements in those 
electromagnetic bands that correlate with specific vegetation features. Observations 
from a number of electromagnetic bands are combined, often as ratios, to increase the 
discriminative power of remote measurements. For example, biomass strongly reflects 
in the infrared part of the spectrum, while reflection is high in the green part of the 
spectrum, and absorption is high in the red part of the spectrum. Combining 
observations in those electromagnetic wavelengths enhances the possibilities for 
biomass detection and increases the possibility to discriminate other objects, such as 
water bodies.  
Further important reasons for using VI are reducing or removing background effects, 
such as the influence of the soil (e.g. SAVI (Huete, 1988) and WDVI (Clevers, 1989)). 
The benefit of soil correction is a more linear relation between biomass and VI and 
greater responsiveness of VI to biophysical plant characteristics. Such soil background 
correction is highly beneficial in vegetation studies, because it minimises saturation 
problems at high vegetation cover. Table 2.3 presents important VI and detection 
themes of successful studies. 
Being able to retrieve biophysical information from remote sensing observations opens 
the way to applications in agricultural settings. In the following sections we deal with 
the most important ones with the greatest success. 
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Classification of Agricultural Land Use 
Biophysical parameters can be related to specific vegetation features, such as 
architecture, colour and composition. These features are vegetation type-specific and 
significantly influence reflection and absorption characteristics. As these characteristics 
can be established under varying conditions, successful classification of vegetation 
types is possible and has widely been performed (e.g. Jago et al., 1999; Turner et al., 
2002). Classification is used for identification and for mapping purposes, e.g. at the 
request of the European Union at large scales, or by order of local authorities at small 
scales to map actual land use and areas.  
 

Quantification of Biophysical Variables in Agriculture 
As has been shown, various characteristics of the earth’s surface can be identified and 
classified, using appropriate remote sensing specifications (i.e. resolution, spectral 
domain). For agricultural objectives, quantification of several of these characteristics is 
relevant, as they may give an indication of vegetation status or crop (growth) 
performance. In some cases, management interactions can be invoked, if quantitative 
information can be retrieved with appropriate accuracy and timing.  
Successful investigations to relate dry matter yield or biomass to remote sensing signals 
are quite common (e.g. Aparicio et al. (2000) for durum wheat at field scale). Such 
relations with fresh weight have also been established (Thenkabail et al., 2000). 
Quantification of leaf area index is very important as it determines a crop’s capacity to 
intercept incoming radiation and thereby crop production potential. Leaf area index 
quantification has been the subject of various studies, such as Turner et al. (1999) and 
Broge and Leblanc (2000). Successful determination of evapotranspiration rates for 
irrigated farming and water resource management has been demonstrated by 
Bastiaanssen et al. (2000). Water supply is important for crop growth, as photosynthesis 
is accompanied by unavoidable water loss, and crop water supply is therefore linearly 
related to crop production. Estimation of evapotranspiration is therefore an important 
indicator for crop growth reduction. As vegetation growth is driven by photosynthesis 
which occurs in chlorophyll, located in vegetation canopies, quantification of 
chlorophyll contents by remote sensing techniques has been studied by various 
authors, with varying degrees of success. Quantification of chlorophyll content has 
been quite successful at leaf level, based on hyperspectral and high resolution 
measurements with fluorescence techniques (e.g. Zarco-Tejada et al., 2003). Up-scaling 
chlorophyll quantification from leaf to canopy level introduces confounding effects of 
leaf area index and background that can be partially eliminated by combining different 
vegetation indices as shown by Daughtry et al. (2000). Successful mapping of 
chlorophyll spatial patterns, derived from field and airborne spectra have been 
demonstrated by Jago et al. (1999), with a root mean square error (RMSE, a measure of 
goodness of fit) of 0.42 mg g-1 (± 13 % of the mean) for grassland and 2.09 mg g-1 (± 
16 % of the mean) for winter wheat. Some Decision Support Systems (DSS) have been 
based on crop light reflection to monitor crop nitrogen status, such as for barley 
(Booltink and Verhagen, 1997) and potato (Booij et al., 2001; Jongschaap and Booij, 
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2004). Studies on detection of the phosphorus status of vegetation canopies have not 
been very successful. Osborne et al. (2002) have shown that hyperspectral data can be 
used to estimate nitrogen and phosphorus concentrations under nutrient stress. 
Phosphorus is most accurately estimated at early growth stages. 
For more complex structures and spatially heterogeneous vegetation canopies, with 
varying background properties, previously found relations between spectral features 
and the pigment and biophysical properties of vegetation (Table 2.2) do not necessarily 
hold (Blackburn and Steele, 1999). Other agriculturally interesting properties that have 
been subject to quantification through remote sensing observations include crop 
establishment, defoliation fraction, disease infestation, fraction intercepted radiation, 
plant height, radiation use efficiency and crop temperature. 
 

2.5 Combinations of remote sensing and 

simulation modelling 
Combinations of remote sensing and simulation modelling can be synergistic in various 
ways. The first area of interest here is the input of remotely-sensed data into simulation 
models. Two approaches are possible:  
a)  Estimates of intrinsic values to set the crop simulation environment (e.g. crop 

classification, emergence, flowering and harvest dates, etc.), and  
b)  The use of estimates of values of biophysical variables that can be used to drive 

the simulation model during run-time (‘run-time calibration’). 
For the second area of interest, the spatial aspect of remote sensing images can be 
integrated, i.e. the synoptic overview that earth observation imagery provides. Two 
application fields are important:  
a)  Using sub-field or sub-region variability to differentiate within an area, originally 

considered homogeneous. 
b)  Using the spatial aspect of remote sensing images to upscale simulation results, to 

obtain field, or regional results. 
 
 

2.5.1 Estimating the simulation environment 

Most of the combined use of remote sensing and simulation modelling is based on 
classification of the earth’s surface by remote sensing, in order to use appropriate crop 
growth simulation models. Large areas (160.000 km2) of natural grasslands in the 
highlands of Peru and Bolivia could be classified (using ERS and NOAAH satellite 
data) as specific pasture types to predict biomass production and biomass quality in the 
region (Jongschaap and Quiroz, 2000). Crop growth simulation models were used to 
estimate soil properties, starting from a set of soil parameters quantified through expert 
knowledge and simulating 30 years of climatic influences on the prevailing pasture 
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types. The same approach was used in Australia: Landsat TM satellite images were used 
to set pasture type, pasture condition and fertility status (Hill et al., 1999). 
 
 

2.5.2 Estimating crop-soil system development 

Time-series of estimates of biophysical characteristics retrieved from remote sensing 
can be used for model calibrations and this combination is therefore useful. Clevers et 
al. (2002) used SPOT data to calibrate a wheat growth model under Mediterranean 
conditions, by estimating leaf area indices and introducing these as calibration sets. 
Jongschaap and Schouten (2005) successfully applied model calibration by estimating 
regional sowing, emergence, flowering and harvest dates of wheat. More often, 
simulation models are validated by remote sensing estimates of biophysical variables, 
e.g. on a regional scale for biomass production (Sparrow et al., 1997). There is a 
growing tendency in the direction of continuous monitoring in highly developed 
agriculture, such as precision agriculture in the USA and in Western Europe. 
 

2.6 Synopsis 
In this chapter, I provided an overview of the most important properties of the crops 
studied in this thesis, of the range of crop growth simulation models and their historic 
development and of the various remote sensing observation methods and their 
developments over time. Additionally, I highlighted the application so far of these 
techniques in agriculture. The next chapters of my thesis present methods to integrate 
crop growth simulation models with remote sensing information. New and advanced 
methods are discussed and their possibilities and constraints are considered. 
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3.1 Abstract 
Optical remote sensing satellite data (SPOT HRV XS, Landsat 5 TM) were used to 
estimate winter wheat area in a pilot area of 5 x 5 km in the Southeast of France. The 
approach was scaled up to a larger area of 45 x 50 km and finally to the regional level 
covering several departments. Microwave remote sensing data (ERS SAR C-band) were 
used to estimate regional wheat flowering dates to calibrate a wheat growth simulation 
model used to calculate wheat yields, subsequently used to estimate regional wheat 
production. Soil maps were used to spatially vary model input parameters for the 
region. Wheat area could be estimated with >80 % users’ accuracy and model-based 
estimates of regional wheat production were in agreement with agricultural statistics. 
These results demonstrate that results from point-based simulation models can be 
applied at spatially higher levels with the aid of remote sensing data. 
 

Keywords: Landsat, SPOT, ERS SAR C-band, classification, simulation model, 
calibration, point to region scaling, wheat, flowering date 
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3.2 Introduction 
Timely and accurate information on crop and soil status is critical for management 
decision-making in arable farming to optimize crop production and to reduce 
environmental pollution. Normally, field observations are performed repeatedly, at 
specific crop stages, to enable timely intervention with appropriate management 
measures. Availability of up-to-date and accurate information on the crop-soil status at 
the (sub-) plot or farm scale will benefit farmers, whereas local and regional policy 
makers or food processing industries will be more interested in regional crop 
production estimates. Sofar, both, remote sensing applications and dynamic simulation 
models have played significant, but different (and mostly separate) roles in generation 
of such information (Jones et al., 2001). Combining remote sensing applications and 
dynamic simulation models has been explored in several studies (Bouman, 1991; van 
Leeuwen, 1996; Clevers et al., 2002; Prévot et al., 2003), but these approaches aimed at 
quantitative biomass, leaf area index and canopy nitrogen estimates from remote 
sensing data to reconstruct crop growth curves used for calibrating dynamic simulation 
models at field scale. Another more direct technique to integrate remote sensing 
observations in crop growth simulation models has been demonstrated by others 
(Boegh et al., 2004; Jongschaap, 2006). Jongschaap (2006) used remote sensing 
observations of model variables (leaf area index and canopy nitrogen) for ‘run-time 
calibration’; i.e. resetting the simulated value with the value estimated from remote 
sensing data. This approach resulted in more accurate predictions of the dynamics of 
characteristics of the crop-soil system, including variables that were not directly 
adjusted. A more innovative and useful combination of both remote sensing and 
simulation modelling integrates knowledge of lower-scale processes in the crop and 
soil systems, captured in simulation models, with the possibility to analyze effects at 
higher (spatial) scales. Therefore the aim of this study was to find a method that allows 
integrating simulation results at point or field scales and use remotely sensed data to 
estimate grain production at higher (regional) scales. To reach this objective, optical 
remote sensing data is used for the classification of winter wheat fields and radar 
remote sensing data are used to establish a regional estimate for flowering date of 
winter wheat.  
Remote sensing applications originally dealt with classification themes, such as 
identification and mapping of (originally military) objects. Classification is still of major 
importance in civil remote sensing applications (Lloyd et al., 2004; de Wit and Clevers, 
2004), but quantification of object variables from remotely sensed information has 
become increasingly important (Moreau and Le Toan, 2003). To transform remote 
sensing signals into useful information, spectral ‘Vegetation Indices’ (VI) are 
computed, e.g. by combining visible and near infrared bands. VI are significantly 
related to important crop characteristics, such as leaf area index (LAI), biomass and 
chlorophyll content (Guyot et al., 1988; Jago et al., 1999; Thenkabail et al., 2000; 
Jongschaap and Booij, 2004). One of the VI that is well related with (green) biomass is 
the Normalized Difference Vegetation Index (NDVI; Rouse et al., 1974) that can be 
used to distinguish bare soil from vegetation, and to filter grasslands from winter crops 
if the timing of the image is well chosen. As a consequence of using (broad band) 
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satellite sensors, operating at lower spatial resolutions than spectral field-based sensors, 
relations between VI and crop-soil characteristics are less accurate. Another 
disadvantage of airborne and satellite remote sensing is the spatially distributed 
atmospheric distortion, which is practically absent in field-based or airborne remote 
sensing observations. Furthermore, sensors that operate in the visible domain may be 
hampered by cloud cover, which may be a problem for the calculation of VI at 
important crop development stages. It is assumed that spectral and spatial resolution of 
SPOT HRV XS (multispectral) and Landsat 5 TM provide enough detail, and that 
cloudless images can be selected from appropriate time windows. At the appropiate 
wavelengths, radar data are not hampered by cloud cover. Target objects in size 
exceeding the radar wavelengths result in radar backscattering, whereas smaller objects 
attenuate the radar signal (Hamacher, 2000; Macelloni et al., 2002). The ERS SAR C-
band radar data that are used have wavelengths of about 5.6 cm, so the radar signal is 
expected to attenuate more strongly with increasing (wet) biomass, but will show an 
increase with wheat ear layer development and drying of the crop canopy towards 
maturity. 
In this study, spaceborne remote sensing observations (SPOT HRV XS, Landsat 5 TM 
and ERS SAR radar data C-band) are used and combined with crop growth simulation 
modelling to estimate regional production volumes, in this case for winter wheat 
(Triticum aestivum L.) that is grown in the Southeast of France. The advantage in this 
methodology is that regional grain production estimates can be provided at an early 
stage, even before harvest. 
 

3.3 Materials and methods 
The approach for integration of remote sensing imagery and crop growth simulation to 
arrive at regional estimates of wheat production comprises the following steps: 
1. Optical remote sensing data (SPOT HRV XS and Landsat 5 TM) are used to locate 

winter wheat crops in the region; 
2. Radar remote sensing data (ERS-SAR C-band) are used to determine wheat 

flowering dates for the region; 
3. Field observations from pilot areas are used to calibrate a wheat growth model to 

local conditions; 
4. Flowering dates as found in steps 2 and 3, in combination with regional soil data, 

are used to extrapolate the simulation model from a point-based to a regional 
application; 

5. Potential and sub-optimal conditions for wheat growth are assumed to determine 
the yield gap, defined as the difference between (simulated) potential production 
and (simulated and observed) actual production (van Ittersum and Rabbinge, 1997); 

6. Actual production statistics from the production region are used to evaluate 
simulation results. 
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3.3.1 Test sites 

The calibration and validation test sites were situated in the Southeast of France near 
Avignon, in the department Bouches-du-Rhône. Model calibration (step 3) was performed 
on data from a pilot site of 5 x 5 km: Alpilles –named after the small mountain chain 
that borders the area in the south. A larger area in the same region (45 x 50 km) was 
used to extrapolate model simulations (step 4). This area is further referred to as Arles 
–named after the town that is situated in this region. The approach was further 
validated (step 6) at the department level (regional scale) in the regions Midi-Pyrénées 
(MP) and Provence-Alpes-Côte d’Azur (PAC). 
Alpilles is a very flat area with altitudes around 10 meters above sea level. Main crops 
are wheat, maize, sunflower and grassland. Some minor crops are tomatoes, artichoke 
and alfalfa. Fields at the test sites have an average size of ca. 200 x 200 m, which is 
large enough to extract pure pixels from high spatial resolution satellites such as SPOT 
HRV XS, Landsat 5 TM and ERS-SAR. Alpilles is representative for the Arles region 
and for MP and PAC with regard to cropping patterns and crop management. 
 
 

3.3.2 Classification of wheat fields using optical imagery 

The growth patterns of winter crops form the basis for winter wheat classification in 
the Alpilles pilot area and in the larger Arles region by using the sequential information 
of three optical satellite images acquired during the growing season. The optical images 
that were required are a Landsat 5 TM image and two SPOT HRV XS images 
(Table 3.1). Atmospheric correction using the 6S software (Vermote et al., 1997) was 
applied before the geometrical correction. The aerosol model was based on actual 
atmospheric optical thickness measurements during satellite overpass, using a sun 
photometer installed at the Alpilles test site. 
In wintertime, arable fields are normally not covered by significant amounts of crop 
biomass, unless pastures or winter crops are grown. At the end of the summer growing 
season (October/November in Europe) winter crops may be sown, that can 
accumulate a substantial amount of green biomass before crop growth and 
development cease due to decreasing temperatures and reduced solar radiation. In early 
spring (March/April in Europe), when temperatures are rising and incoming solar 
radiation increases, these winter crops benefit from their advanced development: the 
green canopy is able to capture early incoming radiation and a partially developed root 
system can take up water and nutrients from the soil. 
 
 
Table 3.1 Specification of the optical remote sensing data. 

Satellite and sensor Scene coordinates Date 

SPOT1 HRV XS K 49 - J 261 February 1st, 1997 
Landsat 5 TM path 196 row 30 April 13th, 1997 

SPOT2 HRV XS K 49 - J 261 July 7th, 1997 
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The Normalised Difference Vegetation Index or NDVI (Rouse et al., 1974) identifies 
green biomass and is calculated from the visible and near infrared bands provided in 
SPOT HRV XS and Landsat 5 TM images. Green plots, with high NDVI values, 
comprising green winter wheat fields and green pastures, were identified from the 
Landsat 5 TM image and the February SPOT1 image by unsupervised classification 
(iso-data clustering with 50 classes that were identified and clustered by field 
observations in the Alpilles pilot area). These fields were sampled again in the July 1997 
SPOT2 image, taken after winter wheat harvest, so that winter wheat fields show up as 
bare soil in the remote sensing image. By looking at the difference between summer 
images and winter images, winter wheat fields were identified as the only winter crop 
grown in this region. The classification result was majority-filtered (box size 3 x 3) to 
assign values of neighbouring pixels to isolated pixels if these were situated within an 
identified wheat field. Field observations and ancillary data were used to calculate the 
users’ accuracy of the above method in the Arles region, i.e. dividing the number of 
correctly classified samples by the total number of samples that were classified as 
belonging to that category (Story and Congalton, 1986). 
 
 

3.3.3 Radar detection of flowering in wheat 

Flowering is a very important and a distinctive phenological event in wheat production 
that marks the start of grain growth in ears at the top of the canopy. Ear biomass per 
unit area increases over time through the increase in the number of flowering plants, 
through grain growth from current photosynthesis products, and through translocation 
of carbohydrates from temporary storage organs (mainly stems) to the developing 
grains. Growing ears significantly affect radar backscatter signals, as their presence and 
increasing biomass at the top of the canopy modify crop geometry and crop moisture 
distribution and hence, attenuation of the radar signal (Hamacher, 2000; Macelloni et 
al., 2002). 
With the Cloud-model (Equation 3.1), radar backscatter and attenuation of a 
vegetation-soil system can be simulated (Attema and Ulaby, 1978). In the model, 
vegetation and soil are represented as clouds of water drops, and radar backscatter (γ) 
depends on the radar beam incidence angle (θ) and on the moisture content and its 
distribution in vegetation (C-term) and soil (G-term). High values for W (canopy water 
content per unit soil surface) mask the influence of the soil term. 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅−
⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⋅−

⋅+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⋅= )cos()cos(1 θ

θ
θ

θγ
WDKmWD

eGeC  (Equation 3.1) 

 
With γ = radar backscatter per unit projected area (m2 m-2), C = backscatter of an 
optically dense vegetation cover (m2 m-2), θ = incidence angle (º), D = crop moisture 
extinction coefficient (m-1), W = canopy water content per unit soil surface (kg m-2), G 
= backscatter of dry soil (m2 m-2), m = volumetric soil moisture content (cm3 water 
cm-3 soil), K = top soil moisture extinction coefficient (m-1). 
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ERS time-series (Table 3.2) were selected as wheat signatures are reported to behave 
consistently in C-band VV (even under varying soil moisture conditions), contrary to 
those of crops with more planophile oriented leaves such as sugar beet, potato and 
maize (van Leeuwen, 1996).  
ERS radar beams in the C-band (at a frequency ≈5.3 GHz and with a wavelength ≈5.6 
cm) acquire radar backscatter from objects larger than ≈5.6 cm. Broad leaves (such as 
sunflower leaves, sugar beet leaves and maize leaves) will produce C-band backscatter, 
in contrast to small-sized leaves (such as those of wheat and grasses). Instead, radar 
signals will attenuate in the vegetation biomass (Macelloni et al., 2002). The use of ERS 
time-series of winter wheat fields to identify crop phenological stages is legitimate, if 
values for crop moisture extinction coefficients (D) are relatively stable in time. Dry 
soil backscatter (G) is different for different soil types and may vary among studies. 
The relative contributions of crop water content (D) and soil moisture content (G) to 
radar backscatter signals (D:G) may vary between 83-96 % (Table 3.3). D and G 
parameter values were established for the Alpilles pilot area by fitting the Cloud-model 
to field observations. 
As D-values appeared to be stable (Table 3.3), a method was developed to detect 
flowering dates in wheat crops, based on the associated change in crop moisture 
distribution and crop geometry, with the flowering stage marking the point where 
aboveground water contents start to decrease and minimum radar backscatter can be 
expected (Hamacher, 2000). In the pre-flowering growth phase, canopy water content 
per unit soil surface area (W) increases with increasing biomass and the radar signal will 
be decreased due to attenuation by the canopy. After the onset of flowering, an 
optically dense vegetation cover of ear biomass starts to develop that prevents radar 
beams from penetrating deeply into the wheat canopy, thereby reducing the radar 
signal maximally. Fully developed ears may produce backscatter, and as soon as grains 
start to ripen, the moisture content of the crop decreases resulting in increased radar 
backscatter as the influence of the soil is no longer masked. The absolute minimum in 
 
 

Table 3.2 Specification of the radar (ERS1 SAR) remote sensing data. 

Date Modea) Orbit Frame 

December 19th, 1996 D 8707 2727 
January 23rd, 1997 D 9208 2727 
January 26th, 1997 A 9259 873 
February 27th, 1997 D 9710 2727 
April 6th, 1997 A 10261 873 
May 8th, 1997 D 10712 2727 
June 12th, 1997 D 11213 2727 
July 17th, 1997 D 11714 2727 
August 21st, 1997 D 12215 2727 
September 25th, 1997 D 12716 2727 

a) A=Ascending, D= Descending 
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the radar signal (i.e. at maximum attenuation) therefore denotes the maximum water 
content per unit surface area and hence flowering. 
Regional dynamics of these phenological events can be detected by ERS (radar) remote 
sensing. Success rate increases if more comparable (wheat) fields are included in the 
detection procedure. Based on this approach, regional flowering dates have been 
estimated for simulation model calibrations with time-series of ERS (radar) data (taken 
in the period November 1996 - May 1997). For the Alpilles area, 10 ERS radar images 
were available of which 7 coincided with the wheat growth period. The 8 descending 
ERS-SAR images were co-registered (linear transformation to the file coordinates of 
one reference scene) and the 2 ascending images also. Subsequently all images were 
speckle-filtered (Gamma Maximum A Posteriori filter (GMAP); Lopez et al., 1991) that 
best retains edge and line features, with a window of 7 x 7 pixels that is appropriate for 
the medium-sized wheat fields. Remote sensing time-series were transformed to the 
Lambert III projection, the standard map projection for this part of France. All ERS-
images were re-sampled (nearest neighbour) to pixels representing 25 m2. Classified 
SPOT images were overlaid with ERS images to generate mean backscatter (DN 
values) for winter wheat fields only. 
 
 

3.3.4 Wheat growth simulation model 

Winter wheat simulations were performed with the mechanistic crop growth model 
Rotask (Jongschaap, 1996), that uses (simple) algorithms based on knowledge of the 
underlying physical, physiological and biochemical processes. The model quantifies 
water fluxes (precipitation, irrigation, run-off, soil evaporation, transpiration and 
drainage), nitrogen fluxes (mineralization/immobilization during soil organic matter 
decomposition, mineralization from dead plant material, (in-) organic fertilization, wet 
deposition, leaching and root nitrogen uptake by mass flow and diffusion), for fallow 
or field crop rotation systems. Light interception and heat accumulation govern crop 
growth and development, respectively. Crop nitrogen contents may vary as a result of 
variations in nitrogen availability. Management decisions accounted for in the model 
refer to ploughing (date, depth), incorporation of organic fertilizer (date, rate, type), 
and application of inorganic fertilizer (date, rate, type), sowing (rate, depth), irrigation 
(date, rate) and harvest (date, method). Crops currently included in the model are 
wheat, sugar beet, potato, barley, rape-seed and maize. For this study, simulations were 
performed for winter wheat only. The model has been calibrated for winter wheat and 
for the soil conditions of the Alpilles pilot area, using 1996, 1997 and 1998 field data 
(Jongschaap, 2000; ReSeDA, 2000). 
 
 

3.3.5 Up-scaling from point to regional level 

Two methods were applied to scale-up point-based simulations to the regional scale. 
Firstly, sowing dates were varied over the month of November in 1996 to introduce 
variation in the model variable ‘sowing date’, to mimic the observed variable sowing 
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dates of winter wheat in the area. Temperature sums calibrated for the Alpilles pilot 
area were applied for the periods sowing to flowering and flowering to maturity. 
Secondly, the spatial variability in soil characteristics was derived from the 
FAO/UNESCO 1:5,000,000 Soil Map of the World (FAO, 1995). Higher resolution 
soil maps of the region are available from different sources, but in our approach we 
wanted to use broad-scale soil information to be applied at regional level. The soil map 
resolution of 5 arc minutes results in a grid of 10 x 10 km at the latitude of the MP and 
PAC region. On the soil map, 3 legend units were identified in the region: 3086 (17 %), 
3139 (80 %) and 6498 (3 %). The remote sensing data showed that only unit 3139 
contained wheat fields. Derivation of the relevant soil characteristics for the simulation 
model, available water content and slope (Table 3.4), resulted in 10 % of its area having 
a water storage capacity of 190 mm m-1 and a slope exceeding 8 %, while the 
remainder had a water storage capacity of 200 mm m-1 and a slope below 8 %. 
The simulation model was executed for 3 production situations with significantly 
different grain yields (van Ittersum and Rabbinge, 1997), because of production 
constraints that were included in the model: 
1. Potential production; wheat growth and development are governed only by crop 

characteristics, intercepted radiation and average daily temperatures. 
2. Water-limited production; as 1, but accounting for inadequate soil moisture 

supply during crop growth: daily assimilation rates are reduced proportionally to 
daily relative crop transpiration deficits. 

3. Nitrogen- and water-limited production; as 2, but accounting for the effect of 
inadequate soil nitrogen supply during crop growth, which may cause canopy 
nitrogen contents to reach critical values, resulting in reduced assimilation rates. 

When water and nitrogen supply from natural sources do not meet crop requirements, 
production situation 1 results in higher yields than production situation 2 (yield gap for 
production situation 2), which in turn gives higher yields than production situation 3 
(yield gap for production situation 3). The production situations were implemented 
without irrigation water supply (situations 2 and 3) and without nitrogen fertilizer 
application (situation 3). Irrigation and fertilizer application data were available for the 
calibration data set, but not for extrapolation to the regional scale. 
Hence, the simulation experiment was set up as follows (Figure 3.1): the region was 
first filtered for winter wheat fields, and subsequently the simulations were performed 
for the 3 production situations. The two soil types were used in production situations 2 
and 3 only, as for production situation 1 soil characteristics are not taken into account. 
Sowing dates were varied over the month of November 1996 (Date of Experiment 
(DoE): 304-334), leading to grain yields P (t ha-1). After calibration of the temperature 
sums between sowing and flowering to DoE 467 (estimated from ERS data), grain 
yields were P’ (t ha-1). Multiplication by the estimated area resulted in regional estimates 
of winter wheat grain production (t). 
Simulation results per soil type are given as Final Grain Yield (FGY, Dry Matter (air-
dry) in t ha-1), with a standard deviation resulting from the simulated variation in 
sowing date. Multiplication of FGY with the wheat area identified through optical 
remote sensing resulted in regional grain yield estimates for the 1997 season. 
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Table 3.5

DoE 304-334
Sowing

 Sowing+Calibration

Flowering DoE 467

Situation 1 

Region Situation 2 
Soil 1

Soil 2

Situation 3 
Soil 1

Soil 2

Table 3.6

P2a 

P1

P2b

P3a

P3b

P’2a 

P’1

P’2b

P’3a

P’3b

 
Figure 3.1 Simulation scheme for estimation of regional grain production P and P’ after determination of 

wheat area and soil types and estimation of regional flowering date. 

 

Table 3.3 Cloud model parameters K, D and G (See Equation 3.1) from various experiments. 

K D G Study area Reference 

0.035 0.4800 0.0863 Alpilles (France) Prévot et al. (1998) 
0.058 0.4501 0.0384 Alpilles (France) Synoptics (1996) 
0.078 0.4330 0.0186 Flevoland (Netherlands) Bouman et al. (1999) 
0.130 0.4338 0.0028 Alpilles (France) Synoptics (1996) 

 
 
Table 3.4 FAO/UNESCO legend unit 3139, its constituent soil codes and the interpretation for 

simulation purposes in Rotask v1.5. 

Soil 
(code) 

Texture 
(class) 

Slope 
(class) 

Areaa) 
(%) 

Soil depth 
(cm) 

Available water content
(mm m-1) 

Calcaric Fluvisols (Jc) 1 1 25 130 200 
Gleysols (G) 2 1 20 130 200 
Eutric Fluvisols (Je) 2 1 20 130 200 
Cambisols (B) 2 2 10 130 190 
Calcaric Fluvisols (Jc) 3 1 25 130 200 

a) Percentage of the soil legend unit area that is covered by the soil code. 
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a   

b  

c  

Figure 3.2 Classification results for the Alpilles test site (45 x 50 km): a) Green biomass detection (in 
light-green) by combining February SPOT1 image and April Landsat 5 TM image, b) fallow 
fields (in brown) and fields with biomass (in dark-green) on July SPOT2 image, and c) resulting 
wheat fields (in yellow) after majority box (3 x 3) filtering. 
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3.4 Results and discussion 

3.4.1 Remote sensing estimates of wheat area and flowering 
date 

About 145 ha of wheat fields in the Alpilles pilot area were used to validate the 
remotely sensed unsupervised classification process, which resulted in a users’ accuracy 
>80 % (Story and Congalton, 1986). In the Arles region of 45 x 50 km, about 3000 ha 
of winter wheat fields were identified, i.e. 1.4 % of the 211,800 ha of wheat reported 
for the MP and PAC region (Figure 3.2). 
The crop moisture extinction coefficient (D) of the Cloud-model (Attema and Ulaby, 
1978) was stable over time and its value agreed with those from other studies 
(Table 3.3), although reported standard errors are relatively large. Nonetheless, ERS 
(radar) time-series are useful for estimation of wheat flowering dates in the region, as 
average backscatter behaviour of radar time-series of winter wheat fields is consistent 
(ESA, 1998; Hamacher, 2000). A 5th order polynomial function fitted best through the 
10 points representing backscatter values of winter wheat fields (Figure 3.3). 
Theoretically, the 5th order agrees with the number of local maximum and minimum 
values that can be expected for the studied time period. Starting with a local maximum 
for soil backscattering (only), to a local minimum when the soil backscatter is fully 
masked at flowering, continuing to a local maximum at maturity with backscatter of the 
ear layer, towards a local minimum after all the fields have been harvested and a dry 
soil is exposed at the end of summer. As the harvest starts and progresses in June/July, 
the curve is increasingly influenced by soil characteristics and less by the crop. 
Flowering date of the wheat crop was set at the 1st local minimum of the fitted 
polynomial function, which was closest to April 12th 1997 or Julian day 102, and in 
agreement with the calibrated Rotask simulation model and field observations (Julian 
day 105-107). 
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Figure 3.3 Identification of the date of flowering from the 1996-1997 ERS-SAR time-series. 
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3.4.2 Crop growth simulation results 

Calibration of Rotask resulted in temperature sums between sowing-emergence of 420 
degree-days (base temperature of -10 °C), emergence-flowering of 1050 degree-days 
(base temperature of 0 °C) and flowering-maturity of 850 degree-days (base 
temperature of 0 °C). On the basis of the flowering date for the region derived from 
radar remote sensing (April 12th 1997), the simulated variation in temperature sum 
between emergence and flowering was 930-1180 degree-days, depending on sowing 
date in November 1996. This variation was applied to run the model for the 3 
production situations.  
The simulation results and regional yield estimates (Table 3.5 and 3.6) illustrate the 
yield-limiting effects of insufficient water and nutrient supply in the absence of 
irrigation and fertilizer application. Hence, appropriate management (irrigation and 
fertilizer application) leads to appreciably higher production levels, in the absence of 
pests and diseases. 
From Tables 3.5 and 3.6 can be concluded that using field observations or remote 
sensing estimates of a flowering date give comparable results for yield simulations and 
that differences can be related to differences in crop management (sowing date and 
cultivar). This supports the assumption that this method can be used to regionally 
 
 

Table 3.5 Calculated regional grain production P (without calibration on observed flowering date in pilot 
area Alpilles) for the 3 production situations. Values in parentheses are standard deviations 
from the mean. 

Scenario Soil 
type 

Area 
(ha) 

Yield 
(t ha-1) 

Production (P) 
(t) 

Regional 
production (t) 

1 Potential - 3000 11.35 (1.02) 34050 34050 
1 2700 6.08 (0.51) 16416 2 Water-limited 
2 300 5.27 (0.39) 1581 

17997 

1 2700 4.70 (0.28) 12690 3 Water- and nitrogen-limited 
2 300 4.19 (0.21) 1257 

13947 

 
 
Table 3.6 Calculated regional grain production P’ (with calibration on remote sensing estimate on regional 

flowering date) for the 3 production situations. Values in parentheses are standard deviations 
from the mean. 

Scenario Soil 
type 

Area 
(ha) 

Yield 
(t ha-1) 

Production (P’) 
(t) 

Regional 
production (t) 

1 Potential - 3000 11.45 (0.19) 34350 34350 
2 Water-limited 1 2700  5.84 (0.15) 15768 
 2 300  5.02 (0.16)  1506 

17274 

3 Water- and nitrogen-limited 1 2700  4.53 (0.08) 12231 
 2 300  4.05 (0.08)  1215 13446 
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calibrate the model on phenological characteristics. The decrease in standard deviation 
for the remote sensing approach (Table 3.6) is caused by the fact that the start of the 
reproductive (grain filling) phase was fixed at the flowering date estimated from remote 
sensing (causing a variable temperature sum between emergence and flowering). The 
use of remote sensing data integrates the effects of varying wheat crop management 
over the region into one representative value for flowering date. In the original 
approach (Table 3.5), the temperature sum between emergence and flowering was 
calibrated on field-data in the Alpilles pilot area and then applied with a variable sowing 
date, which consequently resulted in a variable flowering date. 
 
 

3.4.3 Validation 

Actual wheat production data of the departments in the MP and PAC region obtained 
from Arvalis (Table 3.7; Arvalis, 2003) included total wheat production (t), wheat area 
(ha) and average grain yield (t ha-1). The simulated values of 5-6 t ha-1 agree well with 
observed values that are remarkably low (≈ 50 % of their potential). According to 
Arvalis (op. cit.), average nitrogen application in 1997 was about 100 kg ha-1 in the MP 
and PAC region, which is about 55 % of total crop requirements for realization of the 
potential yield of 11.5 t ha-1. 
Inadequate water supply may have been limiting yield (if additional irrigation was not 
applied, especially since 1997 was an extremely dry year), while yield reductions may 
have resulted from non-controlled pests and diseases. In the simulation model, 
inadequate water and nitrogen supply was taken into account (production situations 2 
and 3), but the regional distribution of crop management practices could not be 
simulated. Fertilizer application rates of 100 kg N ha-1 could be simulated, but 
information on irrigation rates and dates were not available for the region. 
Introducing the effects of local management can be simulated in point-based 
simulation models, but retrieving the necessary (regional) data is very difficult and 
requires extensive field work. However, remote sensing data may be used to spatially 
estimate crop status (e.g. biomass, nitrogen content and moisture status) that may be 
integrated in the simulation process for run-time calibration (Jongschaap, 2006), but 
that is beyond the scope of this paper. 
 
 

Table 3.7 Wheat production (1997) in departments 82 and 83, area and average yield (Arvalis, 2003). 

Department Region Total Production Area Yield 

  (t) (ha) (t ha-1) 

82 Midi-Pyrénées (MP) 540600 104400 5.18 
83 Provence Alpes-Côte d’Azur (PAC) 518500 98100 5.29 
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3.5 Conclusions 
In this paper we present a method to estimate regional, quantitative production 
volumes of winter wheat on the basis of spaceborne remote sensing observation in 
combination with a dynamic crop growth simulation model. The most important 
conclusions are: 

 For purposes of regional winter wheat yield estimations, an approach combining 
optical and radar remote sensing data with point-based crop growth modelling 
yields satisfactory results that are in agreement with regional yield statistics. 
Regional wheat production can be estimated at an early stage, even before harvest. 

 Flowering dates for wheat crops can be estimated from time-series of C-band radar 
data, as radar signals are attenuated maximally at the flowering stage. This requires 
that radar signals from wheat fields can be isolated from those from other fields, 
which appeared feasible with an accuracy >80 % by combining optical remote 
sensing data from early winter and late summer. 

 Flowering dates for wheat crops that are estimated from time-series of C-band 
radar data may replace phenological field observations for the use of model 
calibration and give comparable simulation results. This enables scaling up point 
models to regional applications without an increase in (phenological) field 
observations on the ground. 

 Use of field-specific flowering dates for simulations within a region would result in 
more accurate estimates of regional grain production, than the use of one single 
value for the whole region. This does require however sufficiently large wheat 
fields. Wheat fields in the Alpilles area were medium-sized on average, and therefore 
it is not certain that an individual field approach would have increased simulation 
accuracy. 

 As the differences between simulated and observed production levels are 
presumably associated with management practices, such as irrigation and fertilizer 
application, the use of a remote sensing run-time calibration method for dynamic 
simulation models (Jongschaap, 2006) may result in increased simulation accuracy. 
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4.1 Abstract 
Chlorophyll contents in vegetation depend on soil nitrogen availability and on crop 
nitrogen uptake, which are important management factors in arable farming. Crop 
nitrogen uptake is important, as nitrogen is needed for chlorophyll formation, which is 
important for photosynthesis, i.e. the conversion of absorbed radiance into plant 
biomass. The objective of this study was to estimate leaf and canopy nitrogen contents 
by near and remote sensing observations and to link observations at leaf, plant and 
canopy level. A theoretical base is presented for scaling-up leaf optical properties to 
whole plants and crops, by linking different optical recording techniques at leaf, plant 
and canopy levels through the integration of vertical nitrogen distribution. Field data 
come from potato experiments in the Netherlands in 1997 and 1998, comprising 2 
potato varieties: Eersteling and Bintje, receiving similar nitrogen treatments (0, 100, 200 
and 300 kg N ha-1) in varying application schemes to create differences in canopy 
nitrogen status during the growing season. Ten standard destructive field samplings 
were performed to follow leaf area index and crop dry weight evolution. Samples were 
analyzed for inorganic nitrogen and total nitrogen contents. At sampling dates, spectral 
measurements were taken both at leaf level and at canopy level. 

                                              
† Remmie Booij passed away in December 2003 
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At leaf level, an exponential relation between SPAD-502 readings and leaf organic 
nitrogen contents with a high correlation factor of 0.91 was found. At canopy level, an 
exponential relation between canopy organic nitrogen contents and red edge position 
(λrep, nm) derived from reflectance measurements was found with a good correlation 
of 0.82. Spectral measurements (SPAD-502) at leaf level of a few square mm were 
related to canopy reflectance measurements (CropScanTM) of approximately 0.44 m2. 
Statistical regression techniques were used to optimize theoretical vertical nitrogen 
profiles that allowed scaling-up leaf chlorophyll measurements to canopy nitrogen 
values. A nitrogen attenuation coefficient (kN) of 0.41 g N m-2 soil resulted in highest 
correlation coefficients for scaling-up nitrogen contents from leaf to canopy values. 
Remote sensing of canopy nitrogen (g N m-2 soil) did not require considering vertical 
nitrogen profiles, as canopy reflectance measurements were able to integrate organic 
nitrogen over total canopy depth. The integration of near sensing techniques, theories 
on the interpretation of reflectance signatures and vertical crop nitrogen distribution 
allowed scaling between leaf chlorophyll measurements and canopy nitrogen values. 
This results in more accurate quantification of the nitrogen status of a potato crop, 
which is important information in potato crop management. 
 
Keywords: chlorophyll, nitrogen, SPAD-502, red edge position, leaf-to-canopy scaling, 

potato, remote sensing, near sensing 
 

4.2 Introduction 
Timely and accurate information on crop and soil status is important for management 
actions in arable farming to optimize crop production and to avoid environmental 
pollution. Field observations are normally performed repeatedly throughout the field, 
at specific crop stages to allow timely intervention with appropriate measures. 
Extension services, fertilizer producers and phyto-sanitary companies support 
management decisions by monitoring field crops and recommending their products to 
the farmers. Crop and soil status, advice from third parties and farmers’ experience 
together may trigger management actions that are aimed at improved crop 
performance, reduced environmental impact through pollution, such as nutrient 
leaching, and/or mitigation of the effects of pests and diseases. 
Continuous monitoring of crops and soils is laborious and tedious (or may be 
impossible), if aimed at monitoring every square meter of a field at regular time 
intervals. Higher observation frequencies at higher spatial resolution are needed to 
assess within-field variability of crop growth conditions. Conventional crop chlorophyll 
and nitrogen monitoring methods alone are not suitable for providing this information, 
as they are time-consuming, expensive or destructive. New monitoring techniques, 
such as remote and near sensing, that can easily be applied at field scale, have become 
available at affordable costs. However, scientific proof is needed of the suitability of 
these new monitoring techniques aiming at observing crops at leaf, plant and canopy 
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levels before they can replace or complement conventional monitoring methods. In 
this paper, their application potential is investigated. 
Crop optical properties recorded by passive, optical and active microwave sensors in 
different spectral bands and at different spectral resolutions, provide information on 
various crop characteristics at different spatial scales. Significant relationships have 
been established between leaf area index, ground cover and crop reflectance 
characteristics (e.g. Bouman, 1992; Bouman et al., 1992a and 1992b; Thenkabail et al., 
2000). Crop canopy colour (‘greenness’) e.g., is closely linked to crop characteristics 
determining light use efficiency, such as chlorophyll content and nitrogen status. 
Optical reflectance measurements at leaf level do not necessarily provide detailed 
information on plant and crop performance, as that is co-determined by vertical 
nitrogen distribution, canopy structure and biomass allocation. Yet, the spatial and 
temporal variation in canopy nitrogen status that can be observed by remote sensing is 
of interest in farming practice. Spectral mixing of reflectance patterns over a whole 
plot however, may mask the spatial variability within the plot that forms the basis for 
application of innovative techniques in agriculture, such as precision farming. 
At leaf level, chlorophyll contents can be derived non-destructively from special optical 
techniques with hand-held devices such as the SPAD-502 (Minolta, 2003). Linear 
relations have been described between SPAD-502 readings on one hand and leaf 
chlorophyll content (mg g-1), leaf nitrogen content (mg g-1) and nitrate content (mg l-1) 
in potato petiole sap on the other (Vos and Bom, 1993). If measurements are taken on 
first full-grown leaves, the normal practice in field observations, transformation of leaf 
chlorophyll readings into leaf nitrogen status and plant nitrogen status requires 
assumptions on nitrogen distribution within the plant. 
Nitrogen may be taken up by the roots as nitrate and ammonia, and enters into a 
soluble nitrogen pool. From this pool, nitrogen is used for formation of stable 
components, such as chlorophyll and Rubisco, and inert structural components in cell 
tissue. Inert and structural nitrogen contents increase as the crop develops and may 
comprise up to 30 per cent of total nitrogen at harvest. 
The vertical distribution of nitrogen in the crop is not homogeneous but follows a 
gradient, which may present a problem in nitrogen observations by remote sensing, if 
only the top layers are ‘seen’. In a mathematical approach, Goudriaan (1995) showed 
that to achieve maximum canopy assimilation rates, the vertical nitrogen distribution 
within a canopy should follow the light profile. Self-shading of lower leaves accelerates 
leaf senescence, which enables nitrogen translocation to younger (upper) leaves, 
exposed to higher radiation intensities (Vos and van der Putten, 2001). In this process, 
part of the Rubisco disintegrates and is transported to growing plant parts that are 
exposed to higher radiation intensities, where it is assembled into chlorophyll for the 
photosynthesis process (Ono et al., 1996). Older leaves at the bottom of the canopy 
retain a residual non-transportable fraction of nitrogen. This inert fraction is 
significantly higher for crops well-supplied with nitrogen in juvenile growth stages 
(Groot, 1988).  
Nitrogen profiles in crops tend to the optimal distribution, but with a lag, because of 
high crop growth rates or nitrogen shortage. The requirement for similarity of vertical 
nitrogen patterns and vertical light patterns to optimize crop assimilation has been 
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widely reported (e.g. Mooney and Gulmon, 1979; Anten et al., 1995), but this only 
holds if the relation between leaf nitrogen content and maximum leaf assimilation rate 
is linear. For non-linear relations, as described by Bindraban (1999) and Evans (1983), 
maximum crop assimilation may be attained with incongruent vertical light and 
nitrogen distribution patterns. Canopy photosynthesis is strongly determined by 
photosynthetic efficiency at low radiation intensities, which depends on nitrogen 
content (Dreccer et al., 2000). Vertical light profiles can be described by an exponential 
function of leaf area index (Monsi and Saeki, 1953), with the light extinction coefficient 
(kL), expressing light attenuation per unit leaf area (Equation 4.1). Similarly, the vertical 
nitrogen profile can be described with the nitrogen extinction coefficient (kN), 
expressing attenuation of light per unit leaf nitrogen (Equation 4.2). 
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With: 
kL = light extinction coefficient (m2 soil m-2 leaf) 
T = transmittance fraction of incoming radiation (-) 
LAI = leaf area index (m2 leaf m-2 soil) 
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With: 
kN = nitrogen extinction coefficient (m2 soil g-1 N) 
LeafN = leaf nitrogen content (g N m-2 soil) 
 
Potato canopies are expected to show lower nitrogen extinction coefficients (kN) than 
light extinction coefficients (kL) as LeafN (g N m-2 soil) is always larger than LAI (m2 
leaf m-2 soil), especially in the measurement domain (LAI>0.5 m2 m-2; LeafN>1.5 g N 
m-2). An example will clarify this: at emergence, potato specific leaf weight has a value 
of about 33 g m-2, which increases with crop development to about 66 g m-2. Leaf 
nitrogen content is high at emergence (up to 0.10 g N g-1 leaf) and declines as crop 
development proceeds (to values below 0.02 g N g-1 leaf). In the example of 0.10 g N 
g-1 leaf at emergence at a LAI=0.1 m2 m-2, the value for LeafN is 0.33 g N m-2 soil. 
This value increases at LAI=0.5 to 1.65 g N m-2 soil, and the difference between values 
for LAI and LeafN continues to increase as development proceeds, as increasing LAI 
coincides with decreasing leaf nitrogen contents expressed per unit leaf area and with 
increasing specific leaf weight. 
Values for kN range between 0.1-0.8 m2 soil g-1, depending on crop (architecture), 
nitrogen status and light distribution (Dreccer, 1999). Light extinction coefficients (kL) 
in potato canopies range between 0.3-0.8 m2 soil m-2 leaf. Both, kL and kN may vary 
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among crops and varieties and over years, and they may change in the course of the 
growing season, depending on environmental conditions and crop management, which 
determine crop nutritional and health status and crop architecture. From a crop 
management point of view, for potatoes a canopy nitrogen status >6 g N m-2 soil is 
considered non-limiting for crop growth, even at low leaf area indices. 
 
The objectives of this study are three-fold: 
1) To investigate whether nitrogen status of potato canopies can be derived 

accurately from both SPAD-502 leaf measurements and canopy reflectance 
measurements, thereby opening ways for remote sensing applications at larger 
distances from the field such as by airborne and spaceborn sensor systems. 

2) To investigate whether we can improve the correlation between SPAD-502 leaf 
measurements (taken at top leaves, with high nitrogen contents) and CropScanTM 
canopy reflectance measurements. In other words, to investigate whether SPAD-
502 measurements can be related to canopy nitrogen status instead of leaf nitrogen 
status.  

3) To investigate whether we can improve the correlation between remote sensing 
estimates of canopy nitrogen contents and laboratory nitrogen analyses of leaves 
randomly taken throughout the canopy by correcting these values on the basis of 
theoretical considerations with respect to vertical nitrogen distribution. 

 

4.3 Material and methods 

4.3.1 Field experiments 

In 1997 a potato (Solanum tuberosum L.) field experiment was conducted at Plant Research 
International in the Netherlands (51º 58’ N and 5º 40’ E). Tubers of 35-45 mm of two 
potato varieties (early variety Eersteling and late variety Bintje) were planted at an 
approximate density of 44,444 plants ha-1 (0.75 m between rows and 0.30 m within 
rows). A base fertilizer application of 115 kg P ha-1 (Triple Super Phosphate) and 120 
kg K ha-1 (Kali) was followed by nitrogen applications ranging from 0 to 300 kg ha-1, in 
various application schemes (including split-dressings), to create different crop 
nitrogen levels in the course of the growing season. ‘Split-dressings’ refers to 
techniques where fertilizer doses are split in various portions that are applied to the 
crop-soil system at different moments. Each treatment had 3 replicates that were 
assigned randomly to plots of ca. 25 m2. The experimental design was repeated in trials 
in 1998, which included potato variety Bintje only. 
 
 

4.3.2 Crop analysis 

In both 1997 and 1998, 10 periodic harvests were carried out, consisting of 12 plants 
per plot (30 plants at final harvest), removed from inner rows to avoid disturbing 
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effects from adjacent plots. Samples were taken at predetermined soil cover stages  
(5-10 %, 25 %, 50 %, 75 % and 100 %) and at fixed time-intervals after the 100 % 
cover date (at 2, 4 and 6 weeks after 100 % cover). The last sampling date was at crop 
harvest. Leaf area of young and full-grown fresh leaves was measured by LI-COR 
3100, providing at its highest resolution standard deviations for leaf area between 0.5-
1.0 % (LI-COR, 2001). Fresh weight of (young and full-grown) leaves, stems, tubers 
and roots was measured, as well as their dry weight after 24 hours in an oven at 105 ºC. 
Sub-samples of leaves, stems, tubers and roots were chemically analyzed for total 
nitrogen and nitrate. Total nitrogen was determined by the Dumas method on Vario-
EL equipment (Hereaus, the Netherlands), nitrate on a Bran and Luebbe Traacs 800 
continuous flow system (Maarssen, the Netherlands) (Meurs and Kreuzer, 1995). Leaf 
organic nitrogen contents (g N m-2 soil) were calculated as the difference between total 
nitrogen and nitrate contents. 
 
 

4.3.3 Spectral measurements 

In both 1997 and 1998, incoming photosynthetically active radiation intensity (PAR, 
400-700 nm) at the top of the canopy was measured1, while in 1997 PAR intensity was 
also measured at the bottom of the potato canopy to calculate transmittance and light 
extinction coefficient kL (Equation 4.1). In 1997, PAR intensity was sampled 25 times: 
at each destructive sampling date (10) and 15 times between these dates. 
At each sampling date, ten SPAD-502 leaf chlorophyll readings per plot were taken by 
clamping the instrument on randomly selected first full-grown leaves from the top. 
Values were averaged per plot. SPAD-502 records leaf transmittance of induced light 
beams in two wavelengths, i.e. 650 and 750 or 920 nm (Minolta, 2003). Chlorophyll 
strongly absorbs radiation at 650 nm, and hardly at the other wavelengths (750 or 920 
nm). By comparing the transmittance at these two wavelengths, a characteristic is 
calculated that is linearly related to chlorophyll content (Vos and Bom, 1993; Minolta, 
2003). Actual chlorophyll contents (µmol m-2 leaf) are derived from a calibration curve 
obtained from solvent extraction of leaf pigments. In this study, SPAD-502 readings 
have been calibrated on organic nitrogen contents of potato leaves and stems, as 
organic nitrogen is the mayor component of chlorophyll. 
At each sampling date, 3 canopy reflectance readings (percentage of incoming solar 
radiation in each wavelength band) per plot were taken with CropScanTM equipment 
(CropScanTM, 1993), equipped with 8 spectral bands, each approximately 20 nm width, 
centred at 460, 510, 560, 610, 660, 710, 760 and 810 nm. The 3 measurements per plot 
were averaged. CropScanTM equipment was positioned horizontally at about 1.5 m 
above the potato canopy. The viewing angle of ± 28 degrees results in an area of view 
of ± 0.44 m2. Reflectance measurements of bare soil were taken at each sampling date 
to enable calculation of specific spectral vegetation indices, such as the Weighted 
Difference Vegetation Index (WDVI) as introduced by Clevers (1989). These spectral 
vegetation indices are correlated to important biophysical parameters, such as leaf area 
index (LAI) used in kL calculations.  
                                              
1 PAR interception meter (TFDL, Wageningen, the Netherlands; Meurs and Kreuzer, 1995). 
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CropScanTM reflectance signatures of the continuous electromagnetic spectrum were 
computed by fitting data from the 8 bands to Boltzmann sigmoidal curves 
(Equation 4.3). The main inflexion point in the red-infrared slope (λrep) of this curve is 
correlated to chlorophyll and nitrogen status at leaf level (Guyot and Baret, 1988; 
Clevers and Büker, 1991; Büker and Clevers, 1992; Clevers and Jongschaap, 2001) and 
its validity at canopy level should be proven. Lower chlorophyll contents result in a 
reduction in the value of λrep, i.e. a shift towards blue wavelengths and therefore 
referred to as blue shift. 
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With: 
Rλ = reflectance at wavelength λ (%), 
Rmin = minimum reflectance value (%), 
Rmax = maximum reflectance value (%), 
λrep = red edge position (nm),  
λ = wavelength (nm), 
S = inflexion point: first derivative zero value for Rλ at λrep (nm) 
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Figure 4.1 Example of CropScanTM reflectance values of a potato canopy (variety Bintje) at maximum leaf 

area index (LAI=5.34) on 24th June 1997 for N3-treatment (200 kg N ha-1) with a red edge 
position (λrep) of 731.9 nm. Solid line is eye-fitted curve that smoothly connects the average of 3 
replicates (•) to emulate a continuous spectrum. Dashed lines and arrows indicate how red edge 
position is retrieved (Equation 4.4). 
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Instead of fitting Boltzmann sigmoidal curves to CropScanTM measurements and 
computing the first derivative zero-value for Rλ at λrep (nm), a simpler method with 
fewer wavebands that is computationally simple and straightforward, was used for 
calculating λrep (Equation 4.4; Guyot and Baret, 1988). The accuracy of this method is 
similar to that of the original curve fitting method with a Coefficient of Variance (CV) 
of about 0.05 (Clevers and Büker, 1991; Büker and Clevers, 1992). The simple method 
uses 4 reflectance bands around λrep (660, 710, 760 and 810 nm) for the calculation of 
the red edge position (λrep) (Figure 4.1). 
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With: 
660, 710 = CropScanTM bands, wavelengths below λrep (nm), 
760, 810 = CropScanTM bands, wavelengths above λrep (nm), 
50 = difference between 710 and 760 (nm),  
Rλ = reflectance (%) at wavelength λ (nm) 
 
 

4.3.4 Spectral and nitrogen relations at leaf, plant and canopy 
level 

SPAD-502 readings for potato leaves and red edge position for potato canopies were 
evaluated against leaf organic nitrogen contents of the total canopy. Leaf organic 
nitrogen per unit soil area (LeafNsorg, g N m-2 soil) was calculated as the difference 
between leaf total nitrogen content (LeafNstot, g N m-2 soil) and leaf nitrate content 
(LeafNsNO3-, g N m-2 soil). Leaf organic nitrogen per unit leaf area (LeafNlorg; g N m-2 
leaf) was calculated as LeafNsorg divided by leaf area index (LAI, m2 leaf m-2 soil), 
determined in field measurements. 
A vertical gradient in nitrogen content within the crop was assumed, following an 
exponential extinction with increasing depth (expressed in terms of leaf area) in the 
canopy. The vertical profiles were calculated on the basis of total canopy nitrogen 
values obtained by chemical analyses and by integrating the nitrogen extinction 
coefficient kN (Equation 4.2). Nitrogen contents in the top leaves (LeafNlorg,top, g N m-2 
leaf) were recalculated from laboratory results with average values for the whole 
canopy. Top leaf nitrogen contents resulted from assumptions on exponential 
attenuation of leaf organic nitrogen (kN) and values for leaf area index (LAI) 
(Equation 4.5; Yin et al., 2000). Statistical regression techniques were used to determine 
the most accurate value for kN, i.e. giving the highest correlation coefficient with 
optical measurements. Five different values for kN were tested for different reasons: 
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1. kN 41  =  0.41 m2 g-1 N, the calculated mean (Equation 4.2) for 1997 
experimental data, 

2. kN 55  =  0.55 m2 g-1 N, as reported by Yin et al. (2001), 
3. kN 70  =  0.70 m2 g-1 N, the calculated mean (Equation 4.1) for kL 

(theoretical optimum distribution), 
4. kN -ncalc  =  kN m2 g-1 N, calculated for each observation date (Equation 4.2) 
5. kN -lcalc  =  kL m2 g-1 N, calculated for each observation date (Equation 4.1), 

following the theoretical optimum distribution. 
 

( )LAIk-
N

toporg,L Ne-1

k
 ⋅

⋅
= orgSLeafN

LeafN  (Equation 4.5) 

 
With: 
LeafNlorg,top = organic nitrogen content of top leaves (g N m-2 leaf), 
LeafNsorg = total organic nitrogen content of leaves (g N m-2 soil), 
kN = nitrogen extinction coefficient (m2 soil m-2 leaf), 
LAI = leaf area index (m2 leaf m-2 soil) 
 
Bottom leaf nitrogen content follows from that of the top leaves by multiplying by: 
exp(-kN · LAI), according to the exponential extinction function (Equation 4.2) (Yin et 
al., 2000). For the 1997 growing season, transmittance fraction (T) for incoming PAR 
was related to leaf area index, to calculate light extinction coefficients (kL) 
(Equation 4.1). Similarily, nitrogen extinction coefficients (kN) were established by 
relating the transmittance fraction (T) to leaf organic nitrogen content (g N m-2 soil) 
(Equation 4.2).  
 

Recapitulating, we used the following measurements:  
Field measurements: leaf area index (LAI, m2 m-2), leaf dry weight (g m-2), leaf organic 
nitrogen content (LeafN, expressed as: g N g-1 leaf; g N m-2 leaf and g N m-2 soil), 
incoming PAR above the canopy and PAR intensity at soil level. 
Near and remote sensing measurements: SPAD-502 chlorophyll readings and 
CropScanTM reflectance measurements. 
Calculated variables: radiation transmittance fraction (T, -), red edge position 
wavelength (λrep, nm). Near and remote sensing observations were correlated to field 
and laboratory measurements and statistical regression was performed to evaluate 
theories on canopy nitrogen distribution. 
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4.4 Results 

4.4.1 Field measurements 

Both varieties Eersteling and Bintje followed a normal development and growth pattern, 
as shown in Table 4.1. Crops did not suffer from water shortage, due to supplementary 
irrigation during periods with precipitation deficits. Different nitrogen treatments 
resulted in different chlorophyll and nitrogen contents. SPAD-readings had average 
standard deviations of 1.05 (Bintje) and 1.89 (Eersteling). Average standard deviations for 
red edge position measurements were 0.63 nm (Bintje) and 0.79 nm (Eersteling). WDVI 
observations had average standard deviations of 2.5 % for both varieties. Organic 
nitrogen measurements had average standard deviations of 0.56 g N m-2 soil. 
 
 

Table 4.1 Average potato growth characteristics for 1997 and 1998 experimentsa,b,c). Potato varieties: E = 
Eersteling, B = Bintje. Numbers 97 and 98 refer to experiment year. LAI = leaf area 
index, LeafN = organic nitrogen in leaves, SPAD = SPAD-502 chlorophyll reading, λrep = 
red edge position wavelength, WDVI = Weighted Difference Vegetation Index (Clevers, 1989). 
Leaves and tubers are expressed in dry weights. Unless indicated otherwise, values refer to 
observations at maximum LAIb). 

 N supplya) LAImaxb) LeafN SPAD λrep WDVI Leaves Tubersc)

 (kg N ha-1) (m2 m-2) (g N m-2 soil) (-) (nm) (%) (g m-2) (g m-2) 

E97 0 2.37 2.80 35.7 727.4 32.9 95.2 827.9 
 100 4.41 5.48 40.3 730.0 48.3 171.2 1204.8 
 200 5.03 8.36 42.8 731.2 56.0 207.3 1262.1 
 300 5.86 10.51 43.5 731.7 55.8 247.5 1410.2 
         
B97 0 2.45 3.22 34.8 727.3 37.9 96.9 1168.9 
 100 5.16 9.12 43.6 732.5 54.2 215.7 1382.8 
 200 5.35 11.94 46.5 731.9 56.2 208.2 1408.7 
 300 5.31 12.00 47.0 731.8 53.9 201.3 1347.0 
         
B98 0 2.48 2.70 32.1 727.0 21.7 85.5 1116.8 
 100 4.79 5.48 37.2 729.8 54.8 153.5 1384.6 
 200 6.98 8.59 43.1 731.6 50.0 187.0 1541.7 
 300 7.51 12.12 45.9 731.9 51.7 225.9 1631.7 

a) Fertilization at planting for E97 and B97: April 17th 1997, B98: May 11th 1998 
b) Maximum LAI for E97: June 30th 1997, B97: June 24th 1997, B98: July 14th 1998 
c) Harvest dates for E97: August 26th 1997, B97: September 16th 1997, B98: September 28th 1998 
 
 



Spectral measurements at different spatial scales in potato 

63 

4.4.2 Vertical light and leaf nitrogen distribution 

Light extinction coefficients (kL) varied over the 1997 growing season (Figure 4.2) and 
averaged 0.66 ± 0.17 for early variety Eersteling (E) and 0.73 ± 0.14 for late variety Bintje 
(B). Under similar nitrogen supply, early variety Eersteling produced fewer leaves than 
late variety Bintje, resulting in lower LAI and higher PAR absorption efficiency per unit 
leaf area, as PAR interception did not decrease linearly with LAI reduction. For both 
varieties, kL values decreased with increasing nitrogen supply, indicating more uniform 
light distributions, i.e. less steep light gradients. Relatively high kL values imply steep 
light gradients, i.e. relatively low light intensities deeper in the canopy, which is 
characteristic for potato crops. The higher kL for early Eersteling and the higher values 
in the lower nitrogen treatments for both varieties, result from lower LAI and more 
planophile leaf orientation. 
Nitrogen extinction coefficients (kN) showed greater variation than kL over the 1997 
growing season and averaged 0.41 ± 0.10 (0.39 ± 0.11 for early variety Eersteling and 
0.42 ± 0.10 for late variety Bintje; Figure 4.3). Lower nitrogen supply resulted in higher 
kN values with time, indicating translocation of leaf nitrogen from lower leaf layers to 
top layers in the course of the growing season. Potato crops that received higher 
nitrogen doses showed more stable values for kN over time, indicating less 
translocation of nitrogen to upper leaf layers, as nitrogen supply was sufficient to 
maintain high nitrogen contents throughout. 
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Figure 4.2 Light extinction coefficient (kL) in the 1997 experiment for potato varieties Eersteling (E) and 

Bintje (B) with different nitrogen treatments supplied at planting (N1=0, N2=100, 
N3=200 and N4=300 kg N ha-1). 
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Figure 4.3 Nitrogen extinction coefficient (kN) in the 1997 experiment for potato varieties Eersteling (E) 

and Bintje (B) with different nitrogen treatments supplied at planting (N1=0, N2=100, 
N3=200 and N4=300 kg N ha-1). 

 
 

4.4.3 Relating SPAD-502, red edge position and nitrogen 
contents 

SPAD-502 
Based on leaf surface area, total leaf nitrogen contents (g N m-2 leaf) could be 
estimated more accurately from SPAD-502 readings if vertical nitrogen distribution 
(kN) was integrated in the calculation procedure for both varieties and both years 
(Table 4.2, columns 2-4). If kN was taken into account, correlation coefficients for the 
correlation of SPAD-502 readings (taken at the upper leaves of the canopy) to average 
total leaf nitrogen contents as measured in the laboratory for all leaves, were 
significantly higher. A value of kN = 0.41 yielded the best results. Higher kN values 
resulted in lower correlation coefficients. Calculating kN and kL separately for each 
observation date resulted in lower correlation coefficients. Figure 4.4 shows the 
exponential fit for the Bintje 1997 experiment, corrected for vertical nitrogen 
distribution (kN =0.41): LeafNorg = 0.46· exp (0.047· SPAD) with an r2 = 0.91.  
Using leaf nitrogen contents on a dry weight basis (g N g-1 leaf) yielded slightly lower 
correlation coefficients for most kN values (Table 4.2, columns 5-7). 
Leaf nitrogen contents on soil surface area basis (g N m-2 soil) yielded the lowest 
correlation coefficients with SPAD-502 readings for all situations (Table 4.2, columns 
8-10).  
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Table 4.2 Effect of selected kN values on squared correlation coefficient (r2) for exponential relation between 
SPAD-502 measurements and leaf nitrogen contents expressed as: g N m-2 leaf, g N g-1 leaf 
and g N m-2 soil. Potato varieties: E= Eersteling, B= Bintje. 97 and 98 refer to experiment 
years. Highest r2 values per column are shown in bold. 

kN   Leaf nitrogen contents  

  (g N m-2 leaf) (g N g-1 leaf) (g N m-2 soil) 
  E97 B97 B98 E97 B97 B98 E97 B97 B98 

0.00  0.35 0.53 0.54 0.90 0.84 0.77 0.22 0.52 0.27 
0.41  0.53 0.91 0.70 0.68 0.85 0.75 0.13 0.39 0.18 
0.55  0.48 0.84 0.60 0.59 0.79 0.66 0.12 0.37 0.16 
0.70  0.20 0.77 0.50 0.54 0.72 0.57 0.11 0.35 0.15 
kN calca)  0.21 0.57 n.a.b) 0.59 0.78 n.a.b) 0.04 0.26 n.a.b) 
kL calcc)  0.20 0.61 n.a.b) 0.53 0.77 n.a.b) 0.06 0.32 n.a.b) 

a) kN value was calculated at each observation date 
b) n.a. = not available. In 1998 radiation transmittance data were not collected and as a result kN and kL 

values could not be calculated 
c) kN was set to kL, which was calculated at each observation date 
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Figure 4.4 Relation between SPAD-502 readings (-) and leaf nitrogen contents (g N m-2 leaf) after 

correction for vertical nitrogen distribution (kN =0.41) for the Bintje 1997 trial. Bold line is 
exponential fit: 0.46· exp (0.047· SPAD) with r2=0.91. 
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Red edge position (λrep) 
If in the correlation analyses between CropScanTM reflectance measurements (λrep) and 
nitrogen contents the latter were expressed per unit leaf area (g N m-2 leaf) or per unit 
dry weight (g N g-1 leaf), kN values similar to average kL values (≈0.70) yielded the 
highest correlation coefficients (Table 4.3). For nitrogen content expressed per unit soil 
area (g N m-2 soil), no correction for vertical nitrogen distribution (i.e. kN = 0.00) 
yielded good and stable results. 
Accurately estimating leaf nitrogen contents in g N m-2 leaf (Table 4.3, columns 2-4) or 
in g N g-1 leaf (columns 5-7) from reflectance measurements over a canopy, requires 
knowledge of the vertical nitrogen distribution. Except for variety Eersteling, which has 
fewer leaves with a more planophile orientation, squared correlation coefficients (r2) 
are very low (Table 4.3). 
Leaf nitrogen contents per unit leaf surface area (g N m-2 leaf) and per unit dry weight 
(g N g-1 leaf) were estimated more accurately from CropScanTM reflectance 
measurement at higher kN values. Such higher values imply steeper vertical gradients in 
leaf nitrogen, as a relatively larger proportion of total nitrogen is located in the upper 
canopy layers. As kN continues to increase, eventually a situation will be reached where 
all leaf nitrogen appears located in the top canopy layer, thereby approaching the value 
of leaf nitrogen expressed per unit soil surface (g N m-2 soil). 
Leaf nitrogen contents per unit soil surface, (g N m-2 soil) were accurately estimated, as 
CropScanTM reflectance measurements penetrated deeply into the canopy, thus 
recording all organic nitrogen. Therefore, correction for vertical nitrogen distribution 
 
 

Table 4.3 Effect of selected kN values on squared correlation coefficient (r2) for exponential relation between 
CropScanTM reflectance measurements (λrep) and leaf nitrogen contents expressed as: g N m-2 
leaf, g N g-1 leaf and g N m-2 soil. Potato varieties: E= Eersteling, B= Bintje. 97 and 98 
refer to experiment years. Highest r2 values per column are shown in bold. 

kN    Leaf nitrogen contents  

  (g N m-2 leaf)  (g N g-1 leaf) (g N m-2 soil) 
  E97 B97 B98  E97 B97 B98 E97 B97 B98 

0.00  0.14 0.06 0.03 0.52 0.19 0.05 0.59 0.82 0.80 

0.41  0.74 0.66 0.68 0.87 0.62 0.53 0.49 0.77 0.74 
0.55  0.81 0.74 0.75 0.85 0.67 0.60 0.47 0.76 0.73 
0.70  0.83 0.79 0.79 0.83 0.70 0.65 0.46 0.75 0.72 
kN calca)  0.66 0.56 n.a.b) 0.91 0.64 n.a.b) 0.35 0.66 n.a.b) 
kN calcc)  0.68 0.60 n.a.b) 0.87 0.65 n.a.b) 0.39 0.69 n.a.b) 

a) kN was calculated at each observation date 
b) n.a. = not available. In 1998 radiation transmittance data were not collected and as a result kN and kL 

values could not be calculated  
c) kN was set to kL, which was calculated at each observation date 
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Table 4.4 Squared correlation coefficient (r2) for exponential relation between CropScanTM reflectance 
measurements (λrep) and nitrogen contents of leaves, stems and leaves + stems, expressed as g N 
m-2 soil. Potato varieties: E= Eersteling, B= Bintje. 97 and 98 refer to experiment years. 

Nitrogen source  Nitrogen contents 

  (g N m-2 soil) 

  E97 B97 B98 

Leaves  0.59 0.82 0.80 
Stems  0.48 0.70 0.67 
Leaves + Stems  0.56 0.83 0.78 

 
 
by introducing kN in the correlation equation results in overestimation of leaf nitrogen 
content per unit soil surface and thus to lower correlation coefficients. As nitrogen in 
green stems may contribute to observed reflectance patterns, it was included in the 
correlation calculations between CropScanTM reflectance measurements (λrep) and 
nitrogen contents (g N m-2 soil), but that did not improve the correlations (Table 4.4). 
This can be attributed to the fact that potato stems are oriented more vertically than 
leaves, which reduces their contribution to the reflectance signal. Figure 4.5 shows the 
exponential fit for the Bintje 1997 experiment, without correction for vertical nitrogen 
distribution (kN =0.00): LeafNorg = 0.1131· exp (0.1878· (λrep-710)), with an r2=0.82. 
It must be noted that year-to-year variability in SPAD-502 readings is substantial 
(Table 4.2), but that reflectance measurements (λrep) are more stable (Table 4.3). 
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Figure 4.5 Relation between λrep (nm) and leaf nitrogen content (g N m-2 soil) in the Bintje 1997 trial. 

Bold line is exponential fit: 0.1131·exp (0.1878·(λrep-710)) with r2=0.82. 
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4.5 Discussion and conclusions 
In this paper it is shown that leaf, plant and canopy nitrogen contents can be estimated 
accurately from observation techniques at leaf, plant and canopy level and that they can 
be linked via assumptions on vertical nitrogen distribution in a crop. SPAD-502 
readings, if recorded at upper leaves only, do not account for vertical nitrogen distribu-
tion and are therefore less reliable in establishing crop nitrogen status. Results improve 
significantly if vertical nitrogen distribution is accounted for through adapted sampling 
techniques, i.e. by avoiding sampling upper leaves only and by using kN to correct 
SPAD-502 readings. The best fit was obtained with kN = 0.41, with r2=0.91, which is 
similar to other potato SPAD models, such as reported by Vos and Bom (1993). 
If red edge position (λrep, nm) can be established from reflectance measurements, 
nitrogen contents in potato canopies can be estimated with good accuracy. The results 
in this study show higher correlation coefficients than reported so far (in other crops) 
and gain in value, considering that the results were obtained with discontinuous 
medium-broad spectral bands and not with continuous high-spectral data, such as 
reported by Broge and Mortenson (2002). They used high-spectral field data and 
reported low correlation coefficients (r2) for relations between λrep and wheat canopy 
organic nitrogen contents, ranging from 0.24-0.53. Relations between λrep and canopy 
chlorophyll contents resulted in r2=0.71 for field spectral data in grass and r2=0.66 for 
wheat canopies, whereas for airborne spectral data these values were r2=0.53 for grass 
and r2=0.67 for wheat canopies (Jago et al., 1999). A big advantage of reflectance 
measurements is that they represent an integrated measure of nitrogen contents over 
total canopy depth, which gives direct values for crop nitrogen status. 
Vertical nitrogen distribution should be taken into account in estimating nitrogen 
contents of potato leaves, plants and/or canopy from observations at leaf (SPAD-502) 
or canopy (reflectance measurements) level. In fact, this study shows that accuracy of 
these estimates can be increased significantly, the magnitude depending on observation 
scale (leaf, plant or canopy) and observation technique (SPAD-502 or reflectance 
measurements).  
For (nitrogen) fertilizer management it makes no difference whether nitrogen status is 
expressed per unit soil area (g N m-2 soil), or per unit plant area (g N m-2 leaf). Classical 
field observation techniques take measurements at leaf scale, and are therefore mostly 
expressed per unit plant area. Remote sensing observations seem to operate best per 
unit soil area (Table 4.3). Integrating leaf area index (LAI, m2 leaf m-2 soil) measure-
ments enables interchange between units. Exponential fits of λrep to relatively higher 
organic nitrogen levels (>6 g N m-2 soil) seem to saturate. However, for (nitrogen) 
fertilizer management, the most interesting part of the relation is that below 6 g N m-2 
soil, where nitrogen contents may be limiting crop growth. Crop production is limited 
if observed canopy nitrogen contents are below critical values. Greenwood et al. (1990) 
report that critical nitrogen contents decrease with increasing plant biomass, but it is 
more likely that a minimum amount of organic nitrogen is needed to efficiently inter-
cept incoming radiation. This gives remote sensing observations an advantage over 
SPAD-502 readings, as remote sensing integrates canopy nitrogen over canopy depth, 
whereas SPAD-502 readings should be corrected for vertical nitrogen distributions. 
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The effect of vertical nitrogen distribution on radiation interception efficiency should 
be investigated further. Evans (1983) and Bindraban (1999) already reported non-
linearity between radiation intensity and assimilation efficiency. Yin et al. (2000) use 
vertical nitrogen attenuation (kN) and light attenuation (kL) to calculate radiation 
interception capacity to quantify leaf senescence and (reduced) assimilation capacity. If 
nitrogen shortage is identified by one of these methods, appropriate fertilization 
techniques should be applied to remedy nitrogen deficits. 
The most important conclusions from this study are: 

 Relations between SPAD-502 readings and leaf nitrogen contents are best 
expressed in exponential equations and yield squared correlation coefficients (r2) 
up to 0.91. For potato plants with high kN values (i.e. low nitrogen contents, low 
LAI), SPAD-502 readings need minimal correction, as most of their organic 
nitrogen is located in upper leaf layers. 

 The relation between SPAD-502 readings and organic nitrogen contents of potato 
leaves (g N m-2 leaf) is given by 0.46· exp (0.047· SPAD). 

 If λrep can be determined from reflectance measurements, the correlations 
between λrep and canopy nitrogen contents are strongest if nitrogen contents are 
expressed per unit soil area (e.g. g N m-2 soil). To estimate canopy nitrogen 
contents from observations at leaf level, vertical nitrogen distribution should be 
integrated in the calculation procedure to assign total amounts of organic nitrogen 
to top and bottom leaves of the canopy. 

 The relation between λrep and organic nitrogen contents of potato leaves (g N m-2 
soil) is given by 0.1131· exp (0.1878· (λrep-710)). 

 SPAD-502 readings can be related to canopy nitrogen status instead of leaf 
nitrogen status. Integration of vertical nitrogen distribution, assuming exponential 
extinction with depth, increases the accuracy of estimates of canopy nitrogen 
contents (expressed as g N m-2 leaf, or g N g-1 leaf) based on SPAD-502 readings. 

 Relations between canopy reflectance measurements (λrep) and canopy nitrogen 
contents expressed per unit leaf improved, if vertical nitrogen profiles were 
assumed.  

 Relations between canopy reflectance measurements (λrep) and canopy nitrogen 
contents expressed per unit soil do not need to account for vertical nitrogen 
distribution, as canopy remote sensing integrates nitrogen contents over total 
canopy depth. 

 Relations between canopy reflectance measurements (λrep) and canopy nitrogen 
contents (g N m-2 soil) become less accurate at higher values of λrep. As these 
values occur in situations where nitrogen is not limiting crop growth (i.e. LeafNsorg 

>6 g N m-2 soil), this technique is suitable for monitoring in support of potato 
crop management. 

 For extrapolation to other crops, theoretical assumptions on vertical nitrogen 
distribution in potato should be verified experimentally. For extrapolation to other 
spatial scales and to other sensor resolutions, this point-based approach may be 
further explored by reflectance measurements taken by airborne or by space born 
sensors. We hope that these results will stimulate the use of remote sensing for 
these types of applications. 
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5.1 Abstract 
Dynamic simulations models may enable for farmers the evaluation of crop and soil 
management strategies, or may trigger crop and soil management strategies if they are 
used as warning systems, e.g. for drought risks and for nutrient shortage. Predictions 
by simulation models may differ from field observations for a variety of reasons, and 
such deviations can be revealed instantly by traditional or by new field monitoring 
techniques. The objective of this study was to improve simulation results by integrating 
remote sensing observations during the growing season in the simulation (i.e. run-time 
calibration). The Rotask 1.0 simulation model was used as it simulates daily interactions 
between climate (radiation, temperature, vapour pressure, wind speed, precipitation), 
soils (water holding capacities, soil organic matter dynamics, evaporation) and crops 
(light interception, dry matter production, nitrogen uptake, transpiration). Various run-
time calibration scenarios for replacing simulated values by remotely observed values 
were tested. For a number of times in the growing season, simulated values of leaf area 
index (LAI) and canopy nitrogen contents were replaced with values estimated from 
remote sensing. Field experiments were carried out in the Netherlands in 1997 
(validation) and 1998 (calibration) with potato variety Bintje. Destructive field samplings 
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were performed to follow LAI and canopy nitrogen development in the growing 
season. Remote sensing observations at canopy level were taken by CropScanTM 
equipment, covering the electromagnetic spectrum between 460-810 nm in 8 spectral 
bands. LAI and canopy nitrogen were monitored at various moments throughout the 
growing season by relating them with Vegetation Indices (VI) that were calculated 
from the combination of specific remote sensing bands. The results of this study show 
that run-time calibration of mechanistic simulation models may enhance simulation 
accuracy, depending on the method how additional information is integrated. It is 
advized to synchronize dry matter balances and internal nitrogen balances in 
accordance with adjustments to observed calibration variables (in this case LAI and 
canopy nitrogen content). It is shown that an integrated approach follows the actual 
crop-soil system more closely, which is helpful for specific crop management and 
precision agriculture in general. Run-time calibration with variables that can be 
estimated from remote sensing observations gives more accurate simulation results of 
variables that can not be observed directly, e.g. the evolution of soil inorganic nitrogen 
contents. High frequencies of remote sensing obervations and interpolation in between 
them, allow reconstructing the evolution of LAI and canopy nitrogen contents to be 
integrated in the simulation, thereby increasing simulation accuracy of other model 
variables. 
 
Keywords: calibration, remote sensing, simulation model, canopy nitrogen, LAI, 

potato, precision agriculture 
 

5.2 Introduction 
Mechanistic crop growth simulation modelling has a history of more than 50 years, 
with the 3 major ‘schools of development’ based in Australia, the Netherlands and the 
United States (Jones et al., 2001). These models have proven to be valuable tools in 
yield forecasting both on the regional scale (e.g. Supit et al., 1996) and at plot level (e.g. 
Keating et al., 2003; MacKerron and Haverkort, 2004; Paz et al., 2004). For useful 
applications in agricultural management however, further developments are necessary 
(Landau et al., 1998; van Ittersum et al., 2003). Increased process knowledge and 
improved computer technology have contributed to better understanding and 
description of complex systems such as the crop-soil system. In a systems approach 
the behaviour of the system is explained from quantitative description of the 
underlying processes. This approach is followed in dynamic and mechanistic crop 
growth simulation models in analyzing, predicting and exploring the integrated effects 
of the environment on crop performance. Such models are therefore suitable for 
analyzing effects of crop and soil management and their interactions with the aerial and 
soil environment. Crop growth simulation modelling hitherto mainly focussed on crop 
production and yield, with both satisfactory, as well as unsatisfactory results (Bouman 
et al., 1996; Landau et al., 1998). Dynamic simulation models need detailed information 
on environmental conditions and have to be calibrated under local conditions to 
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generate reliable results. Even if all input data are available, which is often difficult to 
realize, deviations from reality may always occur because of processes that are 
insufficiently understood, due either to conditions outside the model boundaries, or to 
situations that are not included (e.g. random attacks by pests and diseases). 
Remote sensing may provide an attractive alternative to monitor crop and soil status, 
as it can be applied easily at a large spatial scale (especially with airborne and spaceborn 
sensors). Additionally, remote sensing does not need destructive sampling and time-
consuming laboratory analyses. Remote sensing data may be useful in the calibration 
proces of simulation models, if important crop characteristics can be retrieved 
temporarily from remote sensing images, in order to reconstruct growth curves (Prévot 
et al., 2003). An alternative option to incorporate additional information during run 
time (i.e. ‘run-time calibration’) offers the possibility to generate model output in more 
close agreement with observed values.  
It is hypothesisized that run-time calibration through integration of real-time (remote 
sensing) measurements for estimating LAI and canopy nitrogen, is a valuable method 
for more accurate model simulations. This requires integration of a continuous 
simulation system with a run-time, discrete calibration technique. The underlying 
hypotheses are therefore, that the physiological condition of the crop (LAI, canopy 
nitrogen) can be quantified using remotely sensed information, and that the 
information gathered by the sensors has greater accuracy than the simulated ones. 
The objective of this study is to achieve such a system and to find an integration 
method that does not violate the mechanistic simulation processes, and eventually 
yields more accurate simulation results. 
In precision agriculture, prediction of final yield is still important, but synchrony 
between soil supply of and crop demand for water and nutrients is the key in realizing 
that yield. Useful simulation models should be able to give reliable information on the 
evolution of crop-soil systems, especially in between field observations, or on crop-soil 
variables that can not be measured easily, such as soil inorganic nitrogen contents. 
Evidently, accurate prediction of the temporal and spatial dynamics of the crop-soil 
system is also of interest to allow adequate management interventions to avoid 
economic losses and reduce risks of environmental pollution. In this study it is 
investigated if simulation of the crop-soil system can be minimized, by interpolating 
remote sensing observations of important model drivers, such as LAI and canopy 
nitrogen contents and to integrate these interpolations in the model. 
 

5.3 Material and methods 

5.3.1 Field experiment 

Both in 1997 and 1998, a field experiment was conducted at Plant Research International 
in the Netherlands (51º 58’ N and 5º 40’ E). Tubers of 35-45 mm of potato (Solanum 
tuberosum L.) variety Bintje were planted at an approximate density of 44,444 plants ha-1 

(0.75 m between rows and 0.30 m within rows). A base fertilizer application of 10 kg N 
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ha-1 (KAS), 115 kg P ha-1 (Triple Super Phosphate) and 120 kg K ha-1 (Kali) was 
followed by four nitrogen doses (0, 100, 200 and 300 kg N ha-1) to create different 
canopy nitrogen levels in the course of the growing season. Each treatment was 
replicated three times and was assigned randomly to plots of ca. 25 m2.  
In both 1997 and 1998, 10 periodic samplings were carried out, consisting of 12 plants 
per plot (30 plants at final harvest), removed from inner rows to avoid disturbing 
effects from adjacent plots. Samples were taken at predetermined soil cover stages (5-
10 %, 25 %, 50 %, 75 % and 100 %) and at fixed time-intervals after the 100 % cover 
date (at 2, 4 and 6 weeks after 100 % cover). The last sampling date was at crop 
harvest. Leaf area of young, full-grown fresh leaves was measured by LI-COR 3100 
equipment (Lincoln, USA). Fresh weight of all leaves in the sample was determined, as 
well as dry weight of sub-samples of leaves after 24 hours in an oven at 105 ºC. Sub-
samples of leaves were chemically analyzed for total nitrogen according to the Dumas 
method on Vario-EL equipment (Hereaus, NL), and for nitrate on a Bran and Luebbe 
Traacs 800 continuous flow system (Maarssen, NL) (Meurs and Kreuzer, 1995). Leaf 
organic nitrogen contents (g N m-2) were calculated as the difference between total 
nitrogen and nitrate contents. 
At each sampling date, 3 canopy reflectance readings (percentage of incoming solar 
radiation in each wavelength band) per plot were taken with CropScanTM equipment 
(CropScanTM, 1993), equipped with 8 spectral bands, each covering approximately 20 
nm, centred at 460, 510, 560, 610, 660, 710, 760 and 810 nm, and averaged per plot. 
CropScanTM equipment was positioned horizontally at about 1.5 m above the potato 
canopy, with a viewing angle of ca. 28 °, resulting in an area of view of about 0.44 m2. 
Reflectance measurements of bare soil were taken at each sampling date to enable 
calculation of specific spectral vegetation indices (Table 5.1), such as Weighted 
Difference Vegetation Index (WDVI (%); Clevers, 1989) and red edge position (λrep; 
Guyot et al., 1988). Potato LAI (m2 m-2) can be estimated from WDVI using growth 
stage-specific relations as derived from potato trials in the Netherlands (Equations 5.2 
and 5.3: Bouman, 1992; Bouman et al., 1992a; Bouman et al., 1992b; Uenk et al., 1992).  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−=

nir

vis
visnir Rs

RsRRWDVI  (Equation 5.1) 

 
With R = canopy reflectance (%), Rs = bare soil reflectance (%), nir= near infrared and 
vis = visible.  
 

Table 5.1 Vegetation indices (and wavelengths (nm) of the CropScanTM field-spectrometer to calculate them) 
for the determination of potato canopy variables. 

Canopy variable Vegetation index CropScanTM bands Reference 

Biomass NDVI, WDVI 680, 810 nm (Bouman et al., 1992) 
Leaf area index WDVI 680, 810 nm (Clevers, 1989), (Bouman, 1992)
Nitrogen content Red Edge Position 660, 710, 760, 810 nm (Guyot et al., 1988),  

(Jongschaap and Booij, 2004) 
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LAI= 0.048· WDVI  for WDVI < 29 (r2=0.69) (Equation 5.2) 
 
LAI= -0.867 + 0.091· WDVI for WDVI ≥ 29 (r2=0.57) (Equation 5.3) 
 
Potato canopy nitrogen (g N m-2) can be estimated from red edge position 
measurements (Jongschaap and Booij, 2004):  
 
Canopy nitrogen = 0.1131· exp (0.1878 · (λrep-710)) (r2=0.82) (Equation 5.4)  
 
With λrep in nm. 
 
 

5.3.2 Rotask 1.0 simulation model 

The dynamic simulation model Rotask 1.0 (Jongschaap, 1996), developed in the 1990s 
was used as a tool in scientific research and decision support for global environmental 
change and crop management (Yin et al., 2001; Jongschaap et al., 2002). The model 
consists of separate modules to perform model simulations for various crop and soil 
processes. Tools have been added for quick result viewing and calibration procedures 
in a modelling framework (Hillyer et al., 2003). 
Rotask 1.0 is a mechanistic simulation model, using (simple) algorithms based on 
knowledge of the underlying physical, physiological and biochemical processes that are 
described in individual modules that can, if required, be replaced by modules with 
different complexity. For fallow or field crop rotation systems, the model quantifies 
water fluxes (precipitation, irrigation, run-off, soil evaporation, transpiration and 
drainage), nitrogen fluxes (soil organic nitrogen flows, i.e. mineralization/immobiliza-
tion, mineralization from dead plant material, (in-) organic fertilization, wet deposition, 
leaching and root nitrogen uptake by mass flow and diffusion), light interception and 
thermal heat accumulation direct crop growth and development, respectively. Crop 
nitrogen contents may vary as a result of variations in nitrogen availability, caused by 
mineralization, immobilization and fertilizer applications. Management decisions refer 
to ploughing (date, depth), incorporation of organic fertilizer (date, rate, type), and 
application of inorganic fertilizer (date, rate, type), sowing (rate, depth), irrigation (date, 
rate) and harvest (date, method). Crops currently included in the model are wheat, 
sugar beet, potato, barley, rape-seed and maize. For the current study, simulations were 
performed for potato only. 
Crop growth is driven by light interception of the canopy (LAI). The negative feedback 
on crop growth due to water shortage is accounted for by stomatal closure, which 
reduces the potential assimilation rates proportionally. The negative feedback on crop 
growth for nitrogen shortage is coupled with ‘functional LAI’ development. 
‘Functional LAI’ is defined as green tissue that is able to efficiently intercept incoming 
radiation. The amount of canopy nitrogen then determines the magnitude of 
‘functional LAI’ as a minimum concentration of nitrogen required to be functional. 
‘Non-functional LAI’ enters the senescence pool more quickly than ‘functional LAI’. 
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Five categories of input parameters were used in the model: 1) control data: start day 
and year of simulation, end day and year of simulation, location, output variables, 2) 
environmental data, i.e. climate: daily values of radiation, minimum and maximum 
temperature, vapour pressure, wind speed and precipitation and nitrogen concentration 
in precipitation, 3) crop data: crop type, initial values for LAI and organ dry matter 
weights at emergence, minimum, optimum and maximum nitrogen concentrations, 
temperature sums for phenological development stages (emergence, vegetative phase, 
reproductive phase), base temperatures for phenological development rates, maximum 
rooting depth and extinction coefficients for radiation, 4) soil data: soil moisture 
contents at specific pF-values, soil organic matter pools (stable and labile), initial 
carbon and organic nitrogen contents, bulk density, initial inorganic nitrogen content, 
5) management data: decision variables on ploughing, sowing/planting, organic and 
inorganic fertilizer application, irrigation and harvesting. 
Output of the model can be selected from all available variables in the separate process 
modules. For the current study, LAI (m2 m-2), leaf nitrogen content (g m-2) and soil 
inorganic nitrogen content (g m-2) were selected. 
Calibration parameters identified by sensitivity analyses were established by using data 
from various sites in temperate regions in Europe (Jongschaap, 1996; Yin et al., 2001; 
Jongschaap et al., 2002). Sensitivity was expressed as the ‘elasticity’ of output 
parameters: percentile change in output parameter per percentile change of input 
parameter. The input parameters were varied by -10 % and +10 % and the sensitivity 
of selected model output parameters was calculated (Table 5.2). The model was 
calibrated on the 1998 data set for environmental conditions (climate) and soil 
characteristics in Wageningen, the Netherlands to obtain initial values for the sensitive 
input parameters and then applied to the 1997 dataset for validation.  
Model initialization comprised attuning the crop, soil and management data files for 
the potato trials in 1997 and 1998. For crop and management data: LAI at emergence 
(0.059 m2 m-2); row distance (0.75 m); temperature sum between emergence and tuber 
initiation (125 degree-days) and between tuber initiation and maturity (1675 degree-
days); initial dry weight at planting (75 kg ha-1); nitrogen extinction coefficient  
(0.55 m-1); biomass carbon fraction (0.4603 g g-1); minimum nitrogen leaf weight 
concentration (0.4 g m-2). The soil module was initialized for soil moisture holding 
capacity at saturation (0.5090 cm3 cm-3), at field capacity (0.3587 cm3 cm-3), at wilting 
point (0.1084 cm3 cm-3), at air dry (0.0365 cm3 cm-3) and the initial soil moisture 
holding capacity at 0.2030 cm3 cm-3; soil evaporation extinction coefficient (0.2 m-1). 
Several soil fertility input parameters were measured: initial soil inorganic nitrogen (40 
kg ha-1); initial carbon percentage in top soil layer (1.75 %); initial organic nitrogen 
content in top soil layer (0.25 %) and bulk density (1.2 g cm-3). 
The model was started on January 1st, 1997 (day 1) and continued until harvest at day 
259 (September 16th). In correspondence with the field experiments, simulated fields 
were ploughed 0.25 m deep on day 65 (March 6th); at day 100 (April 10th) 10 kg N ha-1 
was applied as base fertilizer rate, followed on day 107 (April 17th) by the remainder of 
the fertilizer at planting. Emergence of the potato crop was set at day 137 (May 17th) in 
accordance with field obervations. 
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Table 5.2 Sensitivity analysis results (% %-1) for input parameters affecting model output variables Leaf Area 
Index (LAI, m2 m-2) and Leaf Nitrogen Content (LeafNWt, kg ha-1). 

LAI (m2 m-2) (% %-1) LeafNWt (kg ha-1) (% %-1)

Water content at field capacity  1.23 Nitrogen extinction coefficient -0.82 
Water content at wilting point -0.81 Biomass carbon fraction 0.62 
Nitrogen extinction coefficient -0.68 Minimum Leaf Nitrogen Weight Concentration -0.55 
  Water content at field capacity 0.53 

 
 

5.3.3 Model integration with remote sensing observations 

Model reset on observation dates 
A first method (A) for model adjustment with remote sensing observations was to 
reset model variables on each observation date with the value estimated from remote 
sensing. 
The canopy variables derived from remote sensing (LAI and/or canopy nitrogen 
status) were compared with simulated values, and if deviations exceeded 10 % (the 
maximum error in traditional field observation techniques), the variables in the 
simulation model were adjusted to the remote sensing estimate. This was done for LAI 
and canopy nitrogen contents separately, as well as for their combination (Table 5.3, 
scenarios 1-6). 
 
 
Table 5.3 Scenario specifications for integration of remote sensing estimates of leaf area index (♣) and canopy 

nitrogen contents (♣n), together with options for the adjustment of internal dry matter and nitrogen ratios 
for shoot and roots (%) and the adjustment of the soil inorganic nitrogen pool (Sn).  

Scenario Adjusted variables 

 Leaf area index  
♣ 

Canopy nitrogen 
♣n 

DMShoot/DMRoot ratios  
% 

Soil nitrogen pool 
Sn 

0 - - - - 
1 + - - - 
2 - + - - 
3 + + - - 
4 + - - + 
5 - + - + 
6 + + - + 
7 + - + - 
8 - + + - 
9 + + + - 
10 + - + + 
11 - + + + 
12 + + + + 

The 0-scenario was used for comparison with other scenarios. 
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Figure 5.1 Example of method A (potato 1997 at 200 kg N ha-1) for the integration of leaf area index values 

estimated from remote sensing observations (○, m2 m-2, scenario 10) and for the integration of canopy 
nitrogen values estimated from remote sensing observations (∆, kg ha-1, scenario 11). Solid line represents 
simulated values; dashed lines represent the run-time calibration (‘model-reset’). 

 
 
An additional strategy was introduced to evaluate the effect of synchronizing internal 
crop balances between root/shoot dry matter and root/shoot nitrogen contents 
(Table 5.3, scenarios 7-12). These balances govern crop nitrogen demand and dry 
matter partitioning during crop growth, and should, in principle, not be disturbed 
when resetting individual model variables. This phenomenon was acknowledged by 
Boegh et al. (2004) who, for the 1st remote sensing observation and LAI adjustment 
date, synchronized all vegetation parameters in order to maintain the congruity of the 
model canopy representation. Afterwards at subsequent satellite passages, only LAI 
was adjusted. In our approach we synchronize root and shoot dry matter (including 
maintaining the ratio between dry matter in stems and leaves) and we synchronize the 
aboveground and belowground nitrogen contents (including the ratio between nitrogen 
contents in stems and leaves). In Figure 5.1 an example of method A is given for the 
integration of LAI (scenario 10) and canopy nitrogen values (scenario 11). 
By following this synchronization approach, it is possible that during run-time 
calibration scenarios an additional nitrogen demand is created from the modelled soil 
system (if canopy nitrogen content derived from remote sensing exceeded the 
simulated value). If this occurred, it was taken from the soil inorganic nitrogen pool. 
Alternatively, ‘surplus’ nitrogen is then returned to the modelled soil system (if canopy 
nitrogen content from remote sensing was below the simulated value). These situations 
and their consequences were examined in scenarios 4-6 and 9-12 (Table 5.3). 
The 0-scenario (running the simulation model without integration of remote sensing 
observations) was used for comparison with the other scenarios. 
 

Model interpolation between observation dates 
In method (B) of model integration with remote sensing observations, canopy variables 
were reset on observation dates and interpolated between those dates (Figure 5.2), as  
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Figure 5.2 Example of method B (potato 1997 at 200 kg N ha-1) for the integration and interpolation of leaf area 

index values estimated from remote sensing observations (○, m2 m-2, scenario 10) and for the integration 
and interpolation of canopy nitrogen values estimated from remote sensing observations (∆, kg ha-1, 
scenario 11). Solid line is simulated to 1st remote sensing estimate, and from last remote sensing estimate; 
values in between are interpolated between remote sensing estimates. 

 
 
the frequency and timing of remote sensing observations allowed reconstructing the 
dynamics of LAI and canopy nitrogen content throughout the growing season. Model 
accuracy will be reduced, if this method (B) is applied at observation frequencies that  
do not allow reconstructing the dynamics of LAI and canopy nitrogen content 
adequately. The consequences of reduced observation frequencies for this method will 
be described in a future paper (Jongschaap, 2006). All scenarios in Table 5.3 were used 
for integration method B. 
In method B, simulation proceeds until the 1st remote sensing observation date, after 
which the relevant variables are derived from interpolation between observations, and 
so forth. After the last remote sensing observation, simulation is resumed until crop 
harvest. 
 
 

5.3.4 Evaluation procedure 

The integration methods A and B, each comprising 12 scenarios, were evaluated by 
calculating the Root Mean Square Errors (RMSE) of the simulated results against field 
measurements. LAI (m2 m-2) and canopy nitrogen contents (kg ha-1) were selected as 
important crop characteristics, as they govern the light interception and canopy 
photosynthesis processes. In addition, nitrate contents (kg ha-1) in the top 0.60 m of 
the soil profile (i.e. potato root zone) were evaluated. Soil inorganic nitrogen content 
cannot be estimated directly from remote sensing, but is an important characteristic 
both for management (fertilization) and for environmental impact, such as the risk of 
pollution.  
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5.4 Results and discussion 

5.4.1 Simulation results 

Validation results for 1997 without the use of remote sensing information (0-scenario) 
can be read from Table 5.4 and Figure 5.3. Model performance for LAI and canopy 
nitrogen content is satisfactory (low RMSE) for large parts of the growing season, 
especially in the early growth phase. LAI simulations deviated from reality in the later 
stages when leaf senescence was increasing. Canopy nitrogen uptake is simulated 
satisfactorily, although with a slight lag in the early phase, while translocation is 
overestimated in the final growth phase. Soil inorganic nitrogen is simulated most 
accurately towards the end of the growing season, when the model ‘catches up’ with 
the observed values. The steep increase in soil inorganic nitrogen around day 107 
reflects the fertilizer applications (Figure 5.4). 
 
 

5.4.2 Remote sensing estimates of LAI and canopy nitrogen 
contents 

Estimates of LAI from WDVI relations were satisfactory, when a distinction was made 
between early and late phases of potato growth (r2=0.87), although LAI estimates were 
somewhat too high, which might have been avoided if WDVI relations would have 
been calibrated on the dataset. The current procedure reflects situations where no extra 
data are available for such calibrations. 
Canopy nitrogen contents were satisfactorily estimated from red edge position relations 
(r2=0.82), although field observations were higher at mid-season. Interference of high 
leaf area indices might have caused the underestimation, as these interact with canopy 
nitrogen estimations using red edge position values. 
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Figure 5.3 0-scenario (see text for explanation) simulation results (solid line) for potato trial in 1997 with fertilizer 

application of 200 kg N ha-1 at planting, with observed values (solid) and remote sensing estimates (open) 
for leaf area index (○,●; m2 m-2) and canopy nitrogen content (∆,▲; kg ha-1). 
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Figure 5.4 Observed ( ◊) and simulated inorganic nitrogen content (kg N ha-1) over top 0.60 m of soil profile for 0-

scenario (- - -) and best integration scenario (B7 —) (see text for explanation). Fertilization treatments 
are indicated in topright of each graph. 

 
 

5.4.3 Method A: Integration of remote sensing observations at 
observation dates 

Introduction of remote sensing estimates at observation dates (method A) improved 
simulation accuracy in the mayority of scenarios, but not in all. Table 5.4 summarizes the 
scenario results for method A. If in a column, the number between parentheses is lower 
than 100 %, the scenario produced better results than the simulation model alone 
(scenario 0) and thus validates the hypothesis of this study. Resetting LAI only, 
improved simulation results for all selected variables under all scenarios. Resetting 
canopy nitrogen content only, improved canopy nitrogen simulations, but reduced 
simulation accuracy for LAI and soil nitrogen. Integrating canopy nitrogen or 
integrating LAI alone resulted in similar improvements for model accuracy of canopy 
nitrogen simulations. The reason for this is that the leaf nitrogen concentration (%) was 
maintained at changing LAI values, thereby proportionally changing the canopy 
nitrogen content (kg ha-1). Resetting LAI and canopy nitrogen content simultaneously, 
improved simulation accuracy for all selected variables, although less than for LAI only.  
Synchronizing the root/shoot dry matter and nitrogen ratios (scenarios 7-12) hardly 
affected the accuracy of LAI estimates, but resulted in slightly higher accuracy of soil  
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Table 5.4 A-scenario results (reset on remote sensing observation dates) expressed as Root Mean Square Error 
(RMSE) of leaf area index (m2 m-2), canopy nitrogen (kg ha-1) and soil inorganic nitrogen over first 0.60 
m of soil profile (kg ha-1). 

Scenario Integrationa) Leaf area index Canopy nitrogen Soil inorganic nitrogen
 ♣ ♣n % Sn (n=40) (n=34) (n=27) 

0 - - - -  0.84 (100)  13.7 (100)  30.4 (100) 

1 + - - -  0.61 (73)  12.2 (89)  24.1 (79) 
2 - + - -  0.86 (102)  12.0 (88)  33.3 (110) 
3 + + - -  0.61 (73)  12.0 (88)  26.0 (86) 
4 + - - +  0.61 (73)  12.2 (89)  24.2 (80) 
5 - + - +  0.85 (101)  12.0 (88)  34.7 (114) 
6 + + - +  0.61 (73)  12.0 (88)  29.3 (96) 
7 + - + -  0.61 (73)  12.7 (93)  23.3 (77) 
8 - + + -  0.85 (101)  12.0 (88)  33.3 (110) 
9 + + + -  0.61 (73)  12.0 (88)  24.9 (82) 
10 + - + +  0.61 (73)  12.7 (93)  23.3 (77) 
11 - + + +  0.85 (101)  12.0 (88)  34.7 (114) 
12 + + + +  0.61 (73)  12.0 (88)  28.9 (95) 

The 0-scenario is simulation run without forcing remote sensing variables. Numbers in parenthesis refer to 
relative value of RMSE (%) compared to 0-scenario (100 %). 
a Integration scenarios: + (integrated) and - (omitted). ♣ = Leaf area index integration, ♣n = canopy 

nitrogen integration, % = synchronizing internal dry matter and nitrogen balances, Sn = adjusting soil 
inorganic nitrogen pools 

 
 
inorganic nitrogen estimates compared to scenarios 1-6, where synchronization of 
root/shoot dry matter and nitrogen ratios were omitted.  
Adjusting the soil inorganic nitrogen pools by putting back crop surplus nitrogen or by 
uptake of crop shortage nitrogen (scenarios 4-6, 10-12) reduced simulation accuracy 
for soil inorganic nitrogen, without affecting LAI and canopy nitrogen estimates. 
When integrated together, LAI estimates and canopy nitrogen estimates gave the 
highest accuracy for soil inorganic nitrogen simulations if internal root/shoot dry 
matter and nitrogen ratios were synchronized. When the soil inorganic nitrogen pool 
was adjusted in addition, accuracy was lower, although more accurately than without 
any re-adjustment. 
 
 

5.4.4 Method B: Integration of interpolated remote sensing 
observations  

In general, method B (integration of interpolated remote sensing observations) showed 
higher RMSE values (i.e. lower accuracy) for LAI, canopy nitrogen content and soil 
inorganic nitrogen content than method A (Table 5.5). 
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Table 5.5 B-scenario results (interpolation between remote sensing observation dates) expressed as Root Mean 
Square Error (RMSE) of leaf area index (m2 m-2), canopy nitrogen (kg ha-1) and soil inorganic nitrogen 
over first 0.60 m of soil profile (kg ha-1). 

Scenario Integrationa) Leaf area index Canopy nitrogen Soil inorganic nitrogen 
 ♣ ♣n % Sn (n=40) (n=34) (n=27) 

0 - - - -  0.84 (100)  13.7  (100)  30.4  (100) 

1 + - - -  0.62 (74)  14.1 (103)  21.7 (71) 
2 - + - -  0.90 (107)  12.0 (88)  56.8 (187) 
3 + + - -  0.61 (73)  12.0 (88)  41.6 (137) 
4 + - - +  0.62 (74)  14.1 (103)  21.7 (71) 
5 - + - +  0.86 (102)  12.0 (88)  38.3 (126) 
6 + + - +  0.61 (73)  12.0 (88)  34.8 (114) 
7 + - + -  0.62 (74)  15.4 (112)  20.9 (69) 
8 - + + -  0.90 (107)  12.0 (88)  56.8 (187) 
9 + + + -  0.61 (73)  12.0 (88)  39.0 (128) 
10 + - + +  0.62 (74)  15.4 (112)  20.9 (69) 
11 - + + +  0.86 (102)  12.0 (88)  38.3 (126) 
12 + + + +  0.61 (73)  12.0 (88)  35.7 (117) 

The 0-scenario is simulation run without forcing remote sensing variables. Numbers in parentheses refer to 
relative value of RMSE (%) compared to 0-scenario (100 %). 
a Integration scenarios: + (integrated) and - (omitted). ♣ = Leaf area index integration, ♣n = canopy 

nitrogen integration, % = synchronizing internal dry matter and nitrogen balance, Sn = adjusting soil 
inorganic nitrogen pools 

 
 
Resetting LAI only increased simulation accuracy, especially for soil inorganic nitrogen 
content, especially if root/shoot dry matter and nitrogen ratios were synchronized, and 
soil inorganic pools were adjusted. Canopy nitrogen content estimates were less 
accurate, whereas they were positively affected in method A. Resetting canopy nitrogen 
only, never increased model accuracy for LAI and soil inorganic nitrogen. Resetting 
both variables simultaneously reduced accuracy of soil inorganic nitrogen estimates. 
Synchronizing root/shoot dry matter and nitrogen balances had little effect on the 
accuracy of leaf area and canopy nitrogen estimates, whereas soil inorganic nitrogen 
estimates were slightly higher in accuracy. 
Adjusting soil nitrogen pools increased the accuracy of soil inorganic nitrogen 
estimates, both without and with synchronized internal root/shoot dry matter ratios 
(scenarios 4-6 and 10-12 vs. 1-3 and 7-9). 
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5.5 Discussion 
This paper illustrates a method to integrate frequent remote sensing observations with 
a mechanistic and dynamic crop growth model and apply run-time calibration of LAI 
and canopy nitrogen content. It should be noted that when remote sensing estimates 
of model variables are used to redirect the model, the effect on other model variables 
should be studied. Boegh et al. (2004) synchronized all model vegetation parameters at 
the 1st remote sensing observation date to maintain canopy congruity of the model 
representation. In our study, this approach was extended to subsequent remote sensing 
estimates of LAI and canopy nitrogen contents, including the daily interpolation of 
LAI and canopy nitrogen contents in between observation dates. 
The results of this study show that run-time adjustment of LAI by remote sensing 
estimates in a mechanistic and dynamic crop growth simulation model, increases 
simulation accuracy, while simultaneous adjustment of canopy nitrogen content 
reduces this accuracy. These results may be specific for the type of model used. In 
Rotask 1.0, as in many other crop models, dry matter accumulation is driven by light 
interception of the canopy. Canopy nitrogen content plays a less significant role, as it 
has no direct feedback on dry matter production, except that it may accelerate leaf 
senescence, if it falls below a threshold level. 
Maintaining internal balances (both dry matter and nitrogen) in the canopy results in 
higher simulation accuracies for soil inorganic nitrogen simulations and LAI and less 
simulation accuracies for canopy nitrogen contents, for both method A and method B. 
This may be explained by the fact that crop growth in favourable and less favourable 
conditions follows a well-balanced growth pattern for roots and shoots (Brouwer, 
1993). Hence, higher LAI values are associated with higher stem and root dry weights, 
and vice-versa. However, in extreme situations, such as hailstorms, fires, and the 
occurrence of pests and diseases, the functional balance may not be maintained. The 
simulation model in this study was not designed to simulate re-growth after such 
events. 
This study has shown that combining crop growth simulation models with remote 
sensing observations can increase simulation accuracy of environmental variables that 
can not directly be derived from remote sensing, such as soil inorganic nitrogen 
content. 
For situations where model calibration is impossible, because of lack of ground truth 
data, interpolated values of remote sensing observations may be used as forcing 
functions in dynamic simulation models, to increase simulation accuracies of other 
variables, such as e.g., soil inorganic nitrogen contents. 
If remote sensing and field observations are taken on the same day, as in the 
experiments reported in this paper, the calculated accuracy (of the simulated variable, 
which reflects the remote sensing estimate after a reset) will result in the accuracy of 
the remote sensing estimation method and not in the accuracy of the simulation model. 
It would therefore be more interesting to evaluate the accuracy on other model 
variables that are not estimated by remote sensing, such as soil inorganic nitrogen 
content. 
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5.6 Conclusions 
It may be concluded that introduction of field-based remote sensing observations for 
run-time adjustment of mechanistic and dynamic crop growth simulation models 
enhances simulation accuracy of important variables in precision agriculture (such as 
LAI, canopy nitrogen status and soil inorganic nitrogen content). More specifically: 

 To estimate canopy nitrogen content, best results are obtained by forcing LAI on 
the simulation model by resetting it on observation dates. This only holds, if the 
simulation model uses LAI as main driver for radiation interception and dry matter 
production. Different type models may benefit from other run-time adjustment 
variables. 

 To estimate soil inorganic nitrogen content, best results are obtained by forcing 
both, LAI and canopy nitrogen content on the simulation model, and maintaining 
root/shoot ratios for dry matter and nitrogen content. 

 Temporal interpolation of LAI and canopy nitrogen contents estimated by remote 
sensing between observation dates does not improve simulation accuracy, if 
observation frequencies are low. In these cases, simulation between remote sensing 
observations remains necessary. 
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6.1 Abstract 
Run-time calibration, i.e. adjusting simulation results for field observations of model 
driving variables during run-time, may allow correcting for deviations between 
complex mechanistic simulation model results and actual field conditions. Leaf area 
index (LAI) and canopy nitrogen contents (LeafNWt) are the most important driving 
variables for these models, as they govern light interception and photosynthetic 
production capacity of the crop. Remote sensing may provide (spatial) data from which 
such information can be estimated. How, when and at what frequency such additional 
information is integrated in the simulation process may have various effects on the 
simulations. The objective of this study was to quantify the effects of different run-
time calibration scenarios for Final Grain Yield (FGY) simulations in order to optimize 
remote sensing image (RS) acquisition. The PlantSys model was calibrated on LAI and 
LeafNWt for maize in France and used to simulate maize crop growth in Argentina 
and the USA, for which remote sensing estimates of LAI and leaf chlorophyll contents 
were available. Leaf chlorophyll data were used to estimate LeafNWt. Due to its 
structure, the PlantSys model was more sensitive to run-time calibration with LeafNWt 
than with LAI. Run-time calibration with LAI showed the largest effect on FGY 
before and around flowering, and could mainly be related to maintenance respiration 
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costs. Run-time calibration with LeafNWt showed the largest effect on FGY at and 
after flowering and could mainly be related to the change in effective radiation 
interception due to changes in leaf life-span. The accuracy of LAI estimates showed a 
major effect on FGY for underestimations but was small in absolute sense. The 
accuracy of LeafNWt estimates had significant impact at all crop development stages, 
but was the strongest after flowering where crop growth and nitrogen uptake are less 
able to recuperate from changes in LeafNWt. In absolute sense, the effect on FGY was 
as strong as the accuracy of the LeafNWt estimates when applied in the early 
reproductive stages. Based on these results it was concluded that remotely sensed in-
field variability of LAI and LeafNWt is valuable information that can be used to 
spatially differentiate model simulations. Run-time calibration at sub-field level may 
lead to more accurate simulation results for whole fields. 
 
Keywords: simulation model, run-time calibration, remote sensing, LAI, nitrogen, 

maize 
 

6.2 Introduction 
Complex mechanistic crop growth simulation models are highly data-demanding and 
have to be calibrated locally to give accurate and reliable simulation results. Even if 
these requirements are met, simulation results may deviate from actual field 
observations for a variety of reasons. Especially when input data are difficult to 
measure accurately or expensive and laborious to collect, they are easily replaced by 
expert knowledge, inter- or extrapolated data and/or approximations that give 
reasonable simulation results, but may still deviate from actual field conditions. Run-
time calibration, i.e. adjusting simulation results on the basis of field observations of 
model driving variables during simulation, allows corrections of such deviations. Such 
additional information about the crop-soil system may come from conventional field 
sampling methods, or may be derived from other techniques, such as remote sensing 
observations that would also directly reveal in-field variability of certain crop and soil 
characteristics in one overview. With a variable degree of success and at different 
spatial resolutions, remote sensing has been used to estimate crop and soil 
characteristics (Thenkabail et al., 2000), such as leaf area index (Clevers, 1989; Bouman, 
1992), biomass (Turner et al., 2002), chlorophyll contents (Ma et al., 1996; Jago et al., 
1999; Jongschaap and Booij, 2004), and evapotranspiration (Bastiaanssen et al., 2000). 
Best results are described for hyperspectral imagery, however, these data are not always 
available, or are too expensive for use at high temporal resolution. Vegetation indices 
are often derived from observations in the visible domain and for satellite and airborne 
platforms cloud cover may interfere. Furthermore, high resolution and hyperspectral 
satellite sensors may have a low overpass frequency, further reducing the chance of 
obtaining images of the desired objects at regular intervals. Cloud cover is a minor 
problem for airborne observations that can take place upon request, but frequent 
flights may be restricted by environmental regulations. 



The effect of LAI and N variability used in run-time calibration 

93 

Observation frequency, interval, timing and accuracy of the data used in run-time 
calibration influence simulation results differentially. The objective of this study was to 
quantify the effects of different run-time calibration scenarios on simulated Final Grain 
Yield (FGY), to support optimization of remote sensing image acquisition and for 
predicting the effects of sub-optimal run-time calibration sets. 
Run-time calibration was performed with the PlantSys simulation model (Jongschaap, 
1996; Jongschaap et al., 2002), applying 5 sequential remote sensing (RS) estimates in 
the course of the growing season of leaf area index (LAI) and leaf chlorophyll content. 
Leaf chlorophyll contents were used to calculate canopy nitrogen contents (LeafNWt). 
PlantSys was calibrated for maize growth in France (Jongschaap et al., 2002) and used 
for maize growth simulations in Argentina and the US, for which remote sensing 
estimates of LAI and leaf chlorophyll were available. The effects were analyzed of 
number of integrated RS observations (1-5) for run-time calibration, as well as their 
timing in the growing season, and of RS estimation accuracy (95 %, 90 %, 75 % and 60 
%) on simulated FGYs. 
 

6.3 Material and methods 

6.3.1 Field experiments 

For model calibration, a field experiment with maize (Zea mays L.) was executed in 
1999 at Avignon-Montfavet, France at 43° 57’ N and 4° 5’ E. Fertilizer (15-15-15) at 
500 kg ha-1 was applied on 13 March 1999 (DoY 72), i.e. 75 kg ha-1 of the elements N, 
P and K. Variety DK-604 was sown at 0.8 m between rows (oriented north-south) and 
0.115 m between plants on 10 May 1999 (DoY 130) and emerged at a density of 9.32 
plants m-2. In June and July 1999 the maize was irrigated (at a rate of 20 mm) once a 
week and in August 1999 twice a week to restrict growth reduction due to drought 
stress. Plants were sampled every 5-7 days (18 times between 27 May and 7 October 
1999) for determination of fresh and dry weight of leaves, stems and grains. Leaf area 
index (m2 m-2) was recorded just before sampling with LAI-2000 equipment (LI-COR 
Inc., USA). SPAD-meter (Minolta, USA) readings were taken on June 28 (DoY 178), 
July 23 (DoY 206) and September 16 (DoY 269). A direct relation between SPAD 
meter readings and leaf nitrogen contents (LeafNWt, kg ha-1 leaf) was used (Equation 
6.1; r2=0.92; Blackmer et al., 1994). 
 

SPADLeafNWt ⋅+−= 0469.00244.1   (Equation 6.1) 
 
Additional experimental data were retrieved from maize experiments, originally 
designed to relate remote sensing observations to field observations, carried out under 
similar settings in 1997 and 1998 in ‘Blue Earth’ Minnesota (43º 45’ N, 94º 16’ W) in 
the USA, and in Pergamino (34º 07’ S, 60º 09’ W) and Pehuaro (36º 09’ S, 62º 58’ W) 
in Argentina. From these trials, information was available on planting and harvest 
dates, maize cultivars, fertilizer application (dates and rates), irrigation (dates and rates), 
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and some information on soil characteristics. These data are further referred to as the 
‘EU Croma database’, named after the project through which these data were made 
available (Croma, 2002). 
Five experimental sites from ‘Blue Earth’ (BLE), eight sites from Pergamino (PG) and 
six sites from Pehuaro (PH) provided data on leaf area index and chlorophyll contents 
at different crop development stages. Leaf SPAD measurements (Minolta, USA) were 
related to leaf chlorophyll contents (LeafChl; μmol m-2 leaf; Equation 6.2; r2=0.96; 
Markwell et al., 1995) and then converted to leaf nitrogen contents (LeafNWt, kg ha-1 
leaf; Equation 6.3; r2=0.83; Ercoli et al., 1993). This two-step approach was needed 
because original SPAD values were no longer available in the EU Croma database. As 
a result, LeafNWt estimates may have been less accurate than LeafNWt estimates in 
the Avignon dataset. 
 

265.0

10SPADLeafChl =   (Equation 6.2) 
 

LeafChlLeafNWt ⋅+−= 0188.0797.2   (Equation 6.3) 
 
In this study, average values and standard deviations per plot and per observation date 
were generated. To study the effect of different run-time calibration frequencies and 
timing in the growing season, five observation dates were selected: 2 in the vegetative 
phase; 1 around tasseling/flowering; and 2 in the reproductive phase (Table 6.1). 
 
 

6.3.2 Simulation model 

PlantSys 1.0 is a mechanistic simulation model (Jongschaap et al., 2002), consisting of 
algorithms based on knowledge of the underlying physical, physiological and 
biochemical processes that are described in individual modules that can, if required, be 
replaced by modules with different complexity. The PlantSys model combines the 
Rotask simulation model (Jongschaap, 1996) and the crop growth and development 
approach of Yin et al. (2001) and Yin and van Laar (2005). PlantSys 1.0 is written in 
Fortran90, and runs in the Fortran Simulation Environment (Version 4) developed by 
van Kraalingen (1995). For fallow or field crop rotation systems, the model quantifies 
water fluxes (precipitation, irrigation, run-off, soil evaporation, transpiration and 
drainage) and nitrogen fluxes (soil organic nitrogen flows, i.e. mineralization/immobili-
zation, mineralization from crop residues, (in-) organic fertilization, wet deposition, 
leaching and root nitrogen uptake by mass flow and diffusion). Light interception and 
thermal heat accumulation govern crop growth and development, respectively. Crop 
nitrogen contents may vary as a result of variations in nitrogen availability, resulting 
from mineralization, immobilization and fertilizer applications. Management decisions 
refer to ploughing (date, depth), incorporation of organic fertilizer (date, rate, type), 
and application of inorganic fertilizer (date, rate, type), sowing (rate, depth), irrigation 
(date, rate) and harvest (date, method). Crops currently included in the model are  
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Table 6.1 Observed maize development stages according to Ritchie et al. (1997) and available run-time 
calibration dates for BLE (Blue Earth, USA), PG and PH (Pergamino and Pehuaro, 
Argentina) sites used in the simulation experiments. 

 1 2 3 4 5 

Crop Stagea) V5 – V7 V7 - V9 V9 - VT R1 - R2 - R3 R4 - R5 
 5th-7th leaf 7th-9th leaf 9th leaf-tasselingSilking-Blister-Milk Dough-Dent

  Vegetative    

Field ID    Reproductive  

BLE 14-18-21-29-36 15-Jun-98 2-Jul-98 17-Jul-98 18-Aug-98 2-Sep-98 
PG 01-02 26-Nov-97 16-Dec-97 29-Dec-97 26-Jan-98 17-Feb-98 
PG 04 n.a. b) 16-Dec-97 29-Dec-97 20-Jan-98 n.a. 
PG 10 1-Dec-97 23-Dec-97 13-Jan-98 26-Jan-98 17-Feb-98 
PG 26 n.a. 28-Nov-97 24-Dec-97 23-Jan-98 11-Feb-98 
PG 27 n.a. 8-Jan-98 26-Jan-98 12-Feb-98 n.a. 
PG 29 8-Jan-98 23-Jan-98 12-Feb-98 25-Feb-98 19-Mar-98 
PG 36 n.a. 23-Jan-98 13-Feb-98 23-Feb-98 11-Mar-98 
PH 38 3-Dec-97 n.a. 7-Jan-98 27-Jan-98 10-Mar-98 
PH 40  3-Dec-97 17-Dec-97 7-Jan-98 27-Jan-98 9 Feb-98 
PH 43 n.a. 16-Dec-97 6-Jan-98 28-Jan-98 n.a. 
PH 44-45 3-Dec-97 10-Dec-97 6-Jan-98 28-Jan-98 n.a. 
PH 47 2-Dec-97 15-Dec-97 5-Jan-98 2-Feb-98 17-Feb-98 
PH 51 2-Dec-97 10-Dec-97 30-Dec-97 19-Jan-98 n.a. 

a) V = vegetative phase, R = reproductive phase 
b) n.a. = not available 
 
 
wheat, sugar beet, potato, barley, rape-seed and maize. For the current study, 
simulations were performed for maize only. 
Five categories of input data were used in the model: 
1) Control data: start day and year of simulation, end day and year of simulation, 

location, output variables,  
2) Environmental data, i.e. meteorological input from local weather stations: daily 

values of radiation, minimum and maximum temperature, vapour pressure, wind 
speed and precipitation and nitrogen concentration in precipitation 

3) Crop data: crop type, initial values (at emergence) for LAI and organ dry weights, 
minimum, optimum and maximum nitrogen concentrations in various crop 
organs, temperature sums for phenological development stages (emergence, 
vegetative phase, reproductive phase), base temperatures for phenological develop-
ment rates, maximum rooting depth and extinction coefficients for radiation 

4) Soil data: soil moisture contents at specific pF-values, soil organic matter pools 
(stable and labile), initial carbon and organic nitrogen contents, bulk density, and 
initial inorganic nitrogen content 
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5) Management data: decision variables on ploughing, sowing/planting, organic 
and inorganic fertilizer application, irrigation and harvesting 

 
Potential leaf photosynthesis rates are modelled with interactive effects of intercepted 
photosynthetic active radiation (PAR), CO2 levels, canopy nitrogen contents and 
canopy temperatures (Farquhar et al., 1984; Yin and van Laar, 2005). Potential leaf 
transpiration rates are coupled with potential photosynthesis rates via the Penman-
Monteith equation (Monteith, 1973; Yin and van Laar, 2005). Actual transpiration rates 
depend on the crop’s ability to transpire water from the soil that enters the plant 
through the roots. Actual leaf photosynthesis rates are proportional to actual/potential 
transpiration rates. The intercepted PARi depends on the incoming PAR0 and the 
extinction of PAR in the canopy depending on LAI according to Equation 6.4, with  
kL = 0.65 as PAR extinction coefficient for maize. 
 

)1(0
LAIk

i
LePARPAR ⋅−−⋅=  (Equation 6.4) 

 
In Equation 6.4, the effective (green) LAI results from leaf growth and leaf senescence 
processes. A vertical nitrogen distribution between a minimum leaf nitrogen 
concentration deeper in the canopy and a nitrogen extinction coefficient (kN = 0.36; 
Jongschaap et al., 2002) determine which part of the LAI is effective for light 
interception. Any ‘ineffective’ LAI is directed towards the senescent pool (Yin et al.; 
2000; Yin and van Laar, 2005). This marks the importance of using LAI and LeafNWt 
for model run-time calibration for the Plantsys model. 
Output of the model can be selected from all variables in the separate process 
modules. For the current study, Final Grain Yield (kg ha-1) was selected as dynamic 
crop growth simulation models are mostly used for yield predictions. 
 
 

6.3.3 Model sensitivity analysis and model calibration 

The sensitivity analysis was tailored to the objective of predicting more accurate values 
over the growing season for Leaf Area Index (LAI, m2 m-2), aerial biomass dry matter 
(ShootWt, kg ha-1), canopy nitrogen contents (LeafNWt, kg ha-1) and grain dry matter 
(GrainWt, kg ha-1). In addition, two other variables are considered important, Final 
Grain Yield (FGY, kg ha-1) and Total Nitrogen Uptake (TNUpt, kg ha-1). As the EU 
Croma database contains values of leaf chlorophyll concentration (μg cm-2), canopy 
nitrogen content was derived from its chlorophyll content (Equation 6.3; Markwell et 
al., 1995). Sensitivity or responsiveness was expressed as the ‘elasticity’ of output 
parameters: change in value of the output parameter per unit change in value of the 
input parameter, both expressed in percentages (Equation 6.5).  
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The input parameters were varied by -10 % and +10 % (err = 10 %) and the elasticity 
of the selected model output parameters was calculated. The most sensitive input 
parameters were entered into the calibration procedure that consisted of an 
optimization procedure to minimize the deviation between simulation results and field 
measurements of leaf area index, grain weight and final grain weight (Hillyer et al., 
2003). Values of the sensitive model input parameters were varied randomly over their 
biologically plausible range (BPR) until the combination with the lowest Root Mean 
Square Error (RMSE) was found. After calibration on the detailed dataset of Avignon 
(1999), calibration was continued on the EU Croma database (for Argentina and the 
USA) to establish cultivar-specific values for the phenological characteristics Base 
Temperature (TempBase, °C), Optimum Temperature (TempOptim, °C), Temperature 
Sum for the Vegetative Phase (TempSumVeg, degree-days) and Temperature Sum for 
the Reproductive Phase (TempSumGen, degree-days). Meteorological data from 
(nearby) weather stations were used to calculate temperature sums between sowing, 
emergence, flowering and maturity dates. 
 
 

6.3.4 Run-time calibration procedures 

The model variables LAI and LeafNWt were used in run-time calibration, the most 
important drivers for dry matter production in the PlantSys model. Both variables 
influence interception of incoming radiation and hence photosynthesis rates and 
biomass production. During run-time calibration, simulated values of LAI and 
LeafNWt were replaced by estimates derived from remote sensing, at maximally five 
dates during the growing season. Three run-time calibration aspects (A, B and C) were 
considered in the analysis. 
 
Aspect A: Number of remote sensing observations that was integrated. Run time 

calibration was performed with 1, 2, 3, 4 and 5 estimates for LAI and 
LeafNWt. 

Aspect B: Timing of the run-time calibrations by varying the observation dates 
integrated in the run-time calibration procedure. All 32 possible 
combinations for 5 remote sensing dates were tested (Table 6.1).  

Aspect C: The effect of under- and overestimation (5 %, 10 %, 25 % and 40 %) of 
LAI and LeafNWt that are used in the run-time calibration procedure.  

 
To evaluate the value of a specific remote sensing date (target date) in the run-time 
calibration procedure, the results of scenarios were associated with weight factors that 
accounted for the number of remote sensing dates that were integrated, and for the 
distance between the target observation date and other observation dates in the 
specific scenario. An example may clarify the weight factor assignment: for target 
remote sensing date 1 (early vegetative stage), the scenario where only 1 remote sensing 
image was used (at date 1, obviously) obtained weigh factor 1.00. A scenario with N 
remote sensing observations (including the target date), obtained a weight factor of 
1/N in the calculations. Additionally, the distance of the supplemental remote sensing 
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dates (close by or further away from the target date) was accounted for: scenarios with 
remote sensing dates next to the target date (at distance 1) obtained a weigh factor 1/2; 
at distance 2 it was 1/4; at distance 3 it was 1/8 and at distance 4 it was 1/16. Eventually, 
the cumulative effects were divided by the cumulative weight factors in order to 
average the impact of each remote sensing scenario per target date. 
As the PlantSys model was not designed to simulate the effect of disturbances (such as 
grazing, mowing, cutting or partial harvesting), a number of other model variables were 
adjusted in association with LAI adjustment: LeafWt, to maintain specific leaf weight 
(m2 leaf g-1 leaf); StemWt, to maintain the leaf/stem ratio (g leaf g-1 stem) and RootWt, 
to maintain the shoot/root ratio (g shoot g-1 root). This approach was suggested by 
Boegh et al. (2004) and successfully applied by Jongschaap (2006). 
The run-time calibration procedures were evaluated by the elasticity of the simulated 
FGYs with respect to the accuracy of the remote sensing observations (Equation 6.5). 
With EFGY = Elasticity (-); FGY err = Final Grain Yield (kg ha-1) at accuracy level err 
(%) for remote sensing estimates of LAI and/or LeafNWt; err = error in remote 
sensing estimate (0, 5, 10, 25 or 40 %). For analysis of the underestimates and 
overestimates in LAI and LeafNWt used in run-time calibration at different crop 
development stages, FGY results were compared with those from simulations where 
LAI and LeafNWt were accurately estimated (err=0). 
 

6.4 Results and discussion 

6.4.1 Model sensitivity analysis and calibration 

Table 6.2 shows the results of the sensitivity analysis using Equation 6.5. The model 
variables LAI (m2 m-2), LeafNWt (kg ha-1), ShootWt (kg ha-1) and GrainWt (kg ha-1) 
were most sensitive to variations in soil moisture characteristics and in phenological 
characteristics. 
Soil moisture characteristics affect moisture availability to the crop, which is linearly 
related to dry matter production, and phenological characteristics affect the duration of 
the vegetative and reproductive phases. These input parameters were either measured 
at the location, or could be estimated from secondary data for each site and cultivar, by 
taking into account soil texture, organic matter contents, emergence dates, flowering 
dates, maturity dates and meteorological data. The most sensitive input parameters 
(Table 6.3) were varied over their biologically plausible range (BPR) and were 
calibrated to field observations for Avignon (Fr). 
Figure 6.1 and Figure 6.2 illustrate simulated model results with field observations for 
Avignon (calibration) and Argentina/USA (validation). Both, LAI simulations (Figure 
6.1) and LeafNWt simulations (Figure 6.2) gave satisfactory results with high 
correlation coefficients (r2) and acceptable Root Mean Square Errors (RMSE). In the 
datasets, the standard deviations for field observations of LAI range from 0.2-0.7 m2 
m-2 and for approximations of LeafNWt from 0.5-5.0 kg ha-1. In general, LeafNWt 
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Table 6.2 Sensitivity analysis results (Equation 6.5; Elasticity, -) for input parameters having the largest 
effect on seasonal simulation values (at 18 comparison dates) for LAI (m2 m-2), LeafNWt (kg 
ha-1), ShootWt (kg ha-1) and GrainWt (kg ha-1). 

LAI (m2 m-2) LeafNWt (kg ha-1) ShootWt (kg ha-1) GrainWt (kg ha-1) 

WC 

Fieldcapacity 

1.23 ExtCoefN -0.82 WC 

Fieldcapacity 

2.28 TempSum 

Veg 

-3.72 

WC 
WiltingPoint 

-0.81 BiomassCFract 0.61 WC 
WiltingPoint 

-1.14 TempBase -1.70 

ExtCoefN -0.68 LeafNWtConc2 
Min 

-0.55 BiomCFract -0.68 TempOptim 1.20 

  WC 
Fieldcapacity 

0.53   NitDemRate 
Base 

0.62 

      WC 
Fieldcapacity 

-0.58 

      InitSeedN 
Conc1 

-0.51 

 
 

Table 6.3 Biologically Plausible Range (Min-Max, with references) and resulting calibrated values (Vcal). 

Input parameter Min Max Vcal Unit Reference 

BiomassCFract 0.3 0.6 0.4249 g g-1 Yin et al. (2001) 
ExtCoefN 0.1 0.8 0.3600 m-1 Vleeshouwers and Jongschaap (2001) 
InitSeedNConc1 0.01 0.025 0.0117 g g-1 Ta and Weiland (1992a, 1992b); 

Sibma (1987) 
LeafNWtConc2Min 0.1 0.6 0.3226 g m-2 Lemaire et al. (1997) 
NitDemRateBase 0.0 0.5 0.1954 g m-2 d-1 Yin et al. (2000, 2001) 
TempBase 4. 10. 7.9316 °C Sibma (1987); Coelho and Dale (1980); 

McMaster and Wilhelm (1997) 
TempOptim 26. 32. 28.0 °C Boons-Prins et al. (1993);  

Coelho and Dale (1980) 

 
 
seems to be slightly underestimated in the model, which may be due to the fact that the 
approximation between SPAD meter readings and LeafNWt (Equation 6.1; Blackmer 
et al., 1994) could not be calibrated on the dataset, or that vertical nitrogen distribution 
may not be fully accounted for in leaf chlorophyll readings (Vleeshouwers and 
Jongschaap, 2001; Jongschaap and Booij, 2004). This study put emphasis on the 
relative effect of run-time calibration methods rather than considering absolute values. 
Therefore, these standard deviations will not have an important impact on the 
outcome of this study. 
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Figure 6.1 Model performance for leaf area index simulation (LAI; m2 m-2) (n = 128; r2 = 0.96;  

RMSE = 0.6 m2 m-2). 
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Figure 6.2 Model performance for leaf nitrogen content simulation (LeafNWt; kg ha-1) (n = 116; r2 = 

0.89; RMSE = 9.6 kg ha-1). 
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6.4.2 Scenario simulations 

The PlantSys model was run for 32 remote sensing date combinations (frequencies), for 
20 accuracy level combinations (ranging from -40 % to +40 %), for 3 calibration 
variables (LAI, LeafNWt and LAI + LeafNWt) and for 18 plots in Argentina and the 
USA, resulting in 34,560 simulation runs. The output variable FGY was used to 
calculate EFGY (Equation 6.5). 
 
 

6.4.3 Run-time calibration frequency 

The frequency of remote sensing observations (1-5) of LAI and LeafNWt used in run-
time calibration showed a distinct effect on EFGY (Figure 6.3). The effects were 
averaged over the accuracy scenarios (0, 5, 10, 25 and 40 %) and for all possible 
combinations of a specific remote sensing frequency. LeafNWt calibrations showed a 
much stronger effect on EFGY than LAI calibrations and standard deviations for EFGY 
declined with increased remote sensing frequency. 
Run-time calibration for both, LAI and LeafNWt were positively correlated with EFGY. 
Calibration on LAI showed a linear decline in EFGY with increasing remote sensing 
frequency, whereas calibration on LeafNWt showed an increase in EFGY, but following 
the ‘law of diminishing returns’. 
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Figure 6.3 Elasticity (Equation 6.5; -) of Final Grain Yield (EFGY) (solid lines) and standard deviation 

(dashed lines) of calibration variables LAI (■), LeafNWt (▲) and LAI + LeafNWt (♦) as 
function of the number of remote sensing dates integrated in the run-time calibration procedure 
(x-axis). Values are averages for all accuracy classes (5, 10, 25 and 40 %) and for all 
frequency distributions applied. 



Chapter 6 

102 

Increasing LeafNWt extends leaf life, which results in a prolonged period of light 
interception, especially in the last part (reproductive phase) of the maize growth cycle, 
and thus in higher grain yield. Higher LAI persé, not necessarily translates into higher 
production in the PlantSys model, as leaf nitrogen content and the vertical nitrogen 
distribution determine where in the canopy the incoming radiation is effectively 
intercepted. 
In the majority of the simulated cases, a change in LAI did not affect the light 
interception significantly, but it did influence the average amount of crop biomass that 
had to be maintained by the crop. A reduction in leaf biomass with a small penalty on 
light interception may result in more carbohydrates that are available for grain yield 
formation as less carbohydrates are needed for crop maintenance respiration. Likewise, 
an increase in leaf biomass showed, on average, no significant change in light 
interception, but increased the amount of carbohydrates that were respired through 
maintenance respiration. As a result, less carbohydrates were available for grain yield 
formation, which is expressed in the negative effect of LAI increase on EFGY. 
Calibrating both LAI and LeafNWt at the same time gave about the same results as a 
run-time calibration on LeafNWt alone. Between the variables, LeafNWt calibration 
has the largest effect on EFGY and therefore, run-time calibration with LAI + LeafNWt 
is omitted from further analyses. 
 
 

6.4.4 Run time calibration timing and accuracy 

This study also investigated the timing of run-time calibration (or choice of calibration 
date in the growing season) with LAI and LeafNWt. Results showed different remote 
sensing acquisition moments for realizing maximum effect on EFGY (Figure 6.4). Run-
time calibration with LAI maximally affected EFGY during the late vegetative stages and 
during tasseling/flowering, whereas run-time calibration with LeafNWt maximally 
affected EFGY during tasseling/flowering and the early reproductive stages. This means 
that the accuracy of the remote sensing estimates for LAI should be high in crop stages 
V7-V9 and V9-VT if these are to be used for run-time calibration. The highest 
accuracy for LeafNWt estimations is required in crop stages R1-R2-R3 and R4-R5 if 
these are to be used for run-time calibration. 
The EFGY response curves of Figure 6.4 show an optimum (minimum or maximum, as 
run-time calibration takes place on driving variables that have a negative (LAI) or 
positive (LeafNWt) effect on simulated FGY) between the first and the last remote 
sensing image. The small effects in the early vegetative phase (V5-V7) are explained by 
the fact that they relate to small absolute values of crop variables. Furthermore, crop 
performance in the early growth phases has relatively little effect on grain yield. Run-
time calibration effects increase as the calibration date is shifted forwards until 
adjustment takes place too late to appreciably affect grain yield and eventually EFGY 

approaches 0. 
LeafNWt calibrations showed the largest effect on EFGY after tasseling/flowering (R1-
R2-R3). Higher LeafNWt in this period increases light interception because of higher  
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Figure 6.4 Elasticity (Equation 6.5; -) of Final Grain Yield (EFGY) affected by run-time calibration date 

(x-axis; crop phenological stages; see Table 6.1) for LeafNWt (solid) and LAI (dashed). Line 
bundles result from accuracy scenarios (5, 10, 25 and 40 %). 

 
 
leaf nitrogen contents. Moreover, higher LeafNWt delays leaf senescence, as during the 
grain filling period, when nitrogen is translocated from vegetative organs to the grain, 
higher LeafNWt allows more withdrawal from the leaves without affecting their 
performance. Nitrogen uptake during this period is limited, because of low soil 
nitrogen levels.  
The accuracy of the LAI and LeafNWt estimates used in run-time calibration 
differentially affects simulated FGY when applied at different crop development 
stages. For LAI, overestimated values in the beginning of the growth period result in 
lower FGY, and if applied after tasseling/flowering (R1-R2-R3), to slightly higher FGY 
(Figure 6.5). Only severe underestimates of LAI (>25 %) affect FGY significantly, 
because of reduced maintenance respiration costs and limited effects on light 
interception. 
Similar to the response of EFGY, the relative effect of run-time calibration with LAI 
(Figure 6.5) is smaller than for run-time calibration with LeafNWt (Figure 6.6), for the 
same reasons. Underestimation of LeafNWt has a relatively stronger (negative) effect 
on simulated FGY than overestimation (positive). Surplus nitrogen may not be fully 
expressed in higher grain yield due to sink limitations. The crop can recover from 
nitrogen shortage, if it occurs in the early stages of crop development, but that is much 
more difficult, if it is imposed at later stages. 
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Figure 6.5 Relative effect of run-time calibration with LAI applied at different crop development stages (x-

axis; crop phenological stages; see Table 6.1). Effects are presented for underestimations of LAI 
(dashed) and for overestimations of LAI (solid) and are relative to the situation where LAI is 
accurately estimated (err=0). 
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Figure 6.6 Relative effect of run-time calibration with LeafNWt applied at different crop development stages 

(x-axis; crop phenological stages; see Table 6.1). Effects are presented for underestimations 
(dashed) of LeafNWt and for overestimations (solid) of LeafNWt and are relative to the 
situation where LeafNWt is accurately estimated (err=0). 
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The results in Figure 6.5 and Figure 6.6 show that the variability in LAI and LeafNWt 
applied at different crop development stages results in differences in simulated FGY. 
For the PlantSys model, this might be significant for all LeafNWt observations and for 
LAI observations deviating more than 25 % of the mean. These results enable to 
spatially differentiate simulation runs for areas that are assumed to be homogeneous, 
such as a single crop on a single field with uniform management. However, within-field 
variability in crop performance may occur as a result of abiotic stress and/or biotic 
interference (such as pests and diseases). Biotic stresses often fall outside the model 
boundaries, whereas abiotic stresses at sub-plot level, for instance the (un-) availability 
of water and nutrients, are often disregarded for practical reasons, such as the costs 
and time requirements for soil sampling. 
Accurate methods have been reported for the quantitative assessment of LAI and 
LeafNWt from remote sensing observations obtained from different platforms (Jago et 
al., 1999; Broge and Leblanc, 2000; Thenkabail et al., 2000; Broge and Mortensen, 2002; 
Jongschaap and Booij, 2004). At an appropriate spatial and spectral resolution, these 
methodologies can be used to observe in-field variability in LAI and LeafNWt, that 
might be the result of soil processes and stresses not incorporated in the model. By 
using these data for run-time calibration of a mechanistic simulation model, they allow 
spatially differentiating the model, which might result in more accurate predictions of 
FGY. 
For such an application, remote sensing pixels that belong to a specific agricultural 
field should be classified in such a way that simulated FGY will give significantly 
different values. Classification should be done by quantitative assessment of LAI and 
LeafNWt. The results of our study indicate that pixels with an LAI deviating more 
than 25 % of the mean, and pixels with LeafNWt devaiting more than 10 % from the 
mean, should be grouped and used for run-time calibration at sub-field level, especially 
at the early reproductive stages (R1-R2-R3). 
 

6.5 Conclusions 
The most important conclusions from our analysis of the effects of different run-time 
calibration scenarios of a mechanistic simulation model with LAI and LeafNWt, 
obtained from remote sensing observations, on simulated Final Grain Yield of maize, 
are: 

 Depending on the major controlling variable for radiation interception in the 
model, LAI or LeafNWt should be used for run-time calibration. The effect of the 
two variables on simulated Final Grain Yield is different. 

 A positive correlation was found between remote sensing frequency and the effect 
on simulated Final Grain Yield. Run-time calibration on LAI negatively affects 
FGY with a maximum elasticity of -0.15. The negative effect is the result of the 
change in maintenance respiration costs that is stronger than the change in 
radiation interception. For calibration on LeafNWt, the effect follows the ‘law of 
diminishing returns’, with a maximum elasticity of 0.60. Remote sensing frequency 
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has a negative correlation with the variability in simulated Final Grain Yield, i.e. 
higher observation frequency leads to more stable results. 

 If a time-series of remote sensing images is not affordable for estimation of LAI 
and/or LeafNWt, preference should be given to acquiring images around the start 
of the reproductive phase, as run-time calibration during that time interval has the 
strongest influence on simulated Final Grain Yield. 

 If the accuracy of LAI or LeafNWt estimates is interpreted as variability in the LAI 
or LeafNWt estimates that are used in run-time calibration, it results in different 
simulated Final Grain Yield. This result indicates that spatial assessment of a point-
based simulation model is possible. 
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Chapter 7 

General discussion and conclusions 
 
 
The still growing population on our globe, the increasing standard of living, the 
continuing globalization, and the anticipated global (climate) change, increase the 
pressure on the scarce natural resources, which thus must be carefully managed to 
maintain their quality as a guarantee for their sustainable use. In that context, food 
security, food safety, environmentally-friendly production technologies and sustained 
use of renewable and non-renewable resources are important issues. In this study I 
investigated the scope and constraints for integrated use of crop growth simulation 
models and earth observation techniques as a basis for improved use of resources, 
aiming at providing a fair income to farmers, reducing production risks and preventing 
environmental degradation. In section 1.2, I presented the most important benefits and 
steps forward in further integration of crop growth simulation models and earth 
observation. 
The following objectives presented the main challenges for integrating remote sensing 
and simulation modelling in this thesis: 
• To derive values of important crop state variables from various remote sensing data 

and link these with field measurements 
• To technically integrate important crop state variables derived from remote sensing 

time-series in dynamic simulation models in order to increase simulation accuracy 
• To define the requirements for successful implementation and identify situations 

where this new integrated technique shows promising results, and to illustrate the 
effect of timing and accuracies of the remote sensing observations 

• To apply point-based simulation models at a spatial scale, based on remote sensing 
observations 

• Eventually improve resource use efficiency, avoid production risks and prevent 
environmental degradation by arable farming practices 

 

7.1 Gained insights and pursuing the objectives 
Dynamic and mechanistic crop growth simulation models can be successfully applied 
at field level if their limitations are taken into account and if data requirements are 
strictly met. While the use of such models generally leads to better yield predictions, 
improved management practices and reduced environmental impact, unavoidable 
random or unexpected events may cause the model to fail or simulation results to 
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differ from reality. Such events include pest and/or disease infestations or extreme 
weather conditions and/or flooding. 
Application of such models with values for input parameters that cannot be accurately 
established may lead to unsatisfactory and unreliable simulation results. In general, the 
degree of success in applying such models is positively correlated with the insight in 
the functioning of the modelled system and the capability to translate that insight into 
the appropriate mathematical expressions and to accurately quantify the required 
model input parameters. By definition, quantification of parameters is more successful 
for a smaller area than for a larger area. A larger area implies a higher degree of 
variability in the system described by model parameters, such as soil characteristics and 
climate conditions. Use of average parameter values for a large region yields simulation 
results that do not reflect reality, because many non-linear relations are involved 
(Nonhebel, 1993). If conclusions at regional scale must be provided on the basis of 
results of point-based simulation models, point-based information must be used to 
derive from the simulation models representative values that are valid for specific 
(point) conditions, and sequentially these simulation results should be integrated over 
the larger area to draw conclusions valid for the regional scale. 
The scope for application of this approach was demonstrated in Chapter 3, where 
wheat production at regional scale was predicted by integrating remote sensing data 
and a crop growth model. The combination of optical satellite data (for classification 
and area estimation) with radar satellite data (for tuning crop phenological phases) 
enabled application of a point-based dynamic simulation model for estimating regional 
wheat production. This appeared successful, as simulation results were in agreement 
with regional yield statistics. The methodology was used in combination with soil maps 
of the area, for derivation of the specific (soil) input parameters. The soil map was 
statistically applied and not overlaid with the wheat classification map, which would 
have been interesting and might have led to spatial specific and even better results if 
detailed soil parameters could have been derived from the soil map allowing 
differentiating soil characteristics between wheat fields. This was not feasible, as not all 
required model input parameters could be derived from the soil map, but this 
possibility warrants certainly attention in future studies. 
As an alternative, crop performance in the course of the growing season (in which the 
soil characteristics are reflected) was monitored and crop status was compared to 
simulation results. Temporal crop status can be monitored through classical 
observation methods (destructive sampling) or through more sophisticated and less 
labour-intensive methods (such as remote or near sensing) that do not interfere with 
crop growth and yield formation. Comparison of simulation results with actual crop 
status may reveal possible deviant behaviour of the simulation model which allows 
identification of probable causes. Deviations of model results from the observations 
may be the result of erratic events, such as pest and/or disease infestations or extreme 
weather conditions, such as hail storms and flooding. Other sources of inaccuracies in 
model outcomes are inappropriate description of system processes, insufficient input 
parameter accuracy or high sensitivity to model input parameters that vary strongly 
over relatively small geographical distances. A factor of major importance in crop 
performance is the human factor, as crop management (such as sowing/planting dates, 
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field preparation, fertilizer regime, phytosanitary measures and irrigation regime) 
commonly affects crop status more strongly than variations in soil and weather 
conditions (Jongschaap and Zwart, 2004). Such management information is generally 
not readily available at regional, and certainly not at pixel level, but when known, these 
practices can easily be incorporated in the simulation. Most management practices are 
applied at whole fields and do not take into account within-field variation. If within-
field variation can be observed, it must be at a specific scale that allows addressing this 
variability with appropriate equipment, either on the basis of prior knowledge or as a 
reaction to actual crop performance. 
If point-based simulation models are to be applied for up-scaling to regional scale, 
simulation accuracy can be increased if actual crop status is used for ‘run-time 
calibration’. This approach can be applied within fields or between fields. If within-
field variability is monitored, differences in soil characteristics and other growth 
conditions (such as the occurrence of pests and diseases) are reflected in crop status 
which thus can be used to adjust model state variables. If important model variables 
are established and averaged for whole fields, differences among fields due to 
variations in field conditions and field treatments can be used to adjust model state 
variables. 
Such a local approach requires that important model driving variables -that control 
crop growth and crop development-, can be successfully monitored and used for ‘run-
time calibration’ of the simulation models. It is demonstrated that Leaf Area Index 
(LAI) and Canopy Nitrogen Status (CNS) for potato (Chapter 4) and maize (Chapter 
6) can be derived successfully from near and remote sensing measurements and thus 
can be made available as calibration data at various moments in the course of the 
simulation period, as presented in Chapter 5. One of the objectives of this thesis is 
thereby achieved, i.e. show that it is possible to accurately derive important model state 
variables such as leaf area index (LAI) and canopy nitrogen status (CNS) from remote 
sensing data and link them to field measurements. 
For the PlantSys simulation model these 2 variables, Leaf Area Index (LAI) and Canopy 
Nitrogen Status (CNS), determine the fraction of the incoming solar radiation that can 
be intercepted (by LAI) and the attainable Radiation Use Efficiency (controlled by 
CNS). It was demonstrated in Chapter 5, where I perform a run-time calibration of a 
simulation model by integrating estimates of leaf area index and canopy nitrogen status 
derived from remote sensing information, that the use of remote sensing observations 
for run-time adjustment of mechanistic and dynamic crop growth simulation models 
enhances simulation accuracy of state variables that are important in precision 
agriculture (e.g. soil inorganic nitrogen contents). Hence, the second objective of this 
thesis ‘to technically integrate important crop state variables derived from remote 
sensing time-series with dynamic simulation models in order to increase simulation 
accuracy’ also was attained. 
The technical integration of the observed crop state variables creates an important 
scientific and model-technical dilemma: how to treat the associated crop state variables 
in the model? It is to be expected that when LAI is changed in the run-time calibration 
process, Leaf Weight and Leaf Nitrogen Weight need to be adjusted as well. Internal 
crop balances such as leaf/stem ratio, shoot/root ratio, harvest index and nutrient 



Chapter 7 

114 

concentrations will be modified if only one of the state variables is adapted. The key 
issue in solving this dilemma and making the right choice lies in the nature of the 
deviation between observed and simulated values of the state variables.  
If the difference between observed and simulated values gradually develops, small 
inaccuracies in model process rate calculations are the most likely reason. In that 
situation, associated state variables should be adapted in such a way that internal 
balances are retained. An alternative option is to re-run the model and to re-initialize 
the input parameters in an iterative process, to attain closer agreement with the 
observed values. However, if this process has to be repeated at sequential observation 
dates, it could result in an endless iterative loop that will never be solved. This 
alternative option was not explored in this thesis but requires attention in further 
studies.  
If the difference between observed and simulated values is changing abruptly, it is 
more likely associated with an erratic event, such as extreme weather or its 
consequences (i.e. a hail storm, a frost or a flood), or a pest or disease infestation, or an 
external intervention such as grazing, mowing or burning. In that situation, the 
observed state variables should be modified and internal balances should not be 
retained. Then, however, it is absolutely necessary to examine whether the model is 
capable of handling such situations. These findings contribute to realization of the 
overall objectives that aim at identification of ‘the requirements and situations where 
this new integrated technique shows promising results’. 
Sensor characteristics of the earth observation devices, such as spectral domain, 
spectral resolution, pixel size, temporal resolution, and (geographical) coverage, (co-) 
determine their usefulness for generation of information underlying integration with 
dynamic crop growth simulation models. Spectral domain and spectral resolution of 
the remote sensing data determine the type of crop variables that can be derived and 
the attainable accuracy of the retrieved information. Pixel size determines the eventual 
application scale, but integration based on high resolution images allows using remote 
sensing information at larger scales. Finally, timing and frequency of the remote 
sensing information determine their additional value for run-time calibration. In 
Chapter 6, I investigate the effect of timing and accuracies of the remote sensing 
observations for determination of LAI and CNS in maize, on their use in run-time 
calibration of mechanistic and dynamic crop growth simulation models. Depending on 
the major controlling variable for radiation interception in the model, LAI or CNS 
should be used for run-time calibration. The effect of the two variables on simulated 
Final Grain Yield (FGY) is different. In general, an increase in remote sensing data 
integrated in the calibration process, leads to more stable simulation results (less 
variation). If the number of remote sensing observation is limited because of budget 
criteria, preference should be given to remote sensing observations around the start of 
the reproductive phase, as run-time calibration during that time interval has the 
strongest influence on FGY simulations. Remote sensing observations retrieved 
outside this optimal development window, have less impact on FGY simulation results. 
Different values for LAI and CNS can be obtained at different crop stages through 
optical remote sensing, leading to differences in simulation results as shown in 
Chapters 4 and 5. Within-field variability can also be observed within a single remote 
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sensing image. This opens the door to the spatial assessment of point-based simulation 
models, thereby expanding the use of these valuable research tools, as up-scaling is 
feasible. 
All of the achievements illustrated above have provided building blocks for pursuing 
one of the last objectives and form the basis of a decision support system that allows 
taking advantage of both remote sensing techniques and crop growth simulation 
modelling. This contributes to the last objectives, to ‘increase resource efficiency, avoid 
production risks and prevent environmental degradation of arable farming practices’. 
 

7.2 Validation of the hypotheses 
In Chapter 1, this thesis started with formulation of a number of research objectives 
and hypotheses that were examined through a number of case studies at spatial scales 
ranging from single plants to canopies, from sub-fields to fields and from fields to a 
region. In the foregoing section, the degree of success in reaching the objectives of this 
thesis were presented. Now a scientific reasoning for accepting or rejecting these 
hypotheses is given. 
In Chapter 5 it was demonstrated that sub-optimal growth conditions lead to slower 
leaf area development and to reduced leaf area index and lower canopy nitrogen status. 
Lower leaf area index and canopy nitrogen status could be estimated through near and 
remote sensing techniques as demonstrated in Chapters 4, 5 and 6. On the basis of an 
appropriate number of remote sensing observations, as discussed in Chapter 6, it was 
possible to reconstruct seasonal leaf area index and canopy nitrogen development 
curves. Such curves can be used for classical model calibrations, as shown before by 
other authors (e.g. Bouman, 1991). Integration of this information in crop growth 
simulation modelling revealed that sub-optimal production conditions were related to 
sub-optimal nitrogen fertilizer rates. On the basis of only remotely sensed information, 
the sub-optimal growth patterns could have been attributed to a range of sub-optimal 
growth conditions, such as soil moisture deficiency, nitrogen deficiency, or soil-borne 
diseases. For this situation, the simulation model was capable of estimating crop 
transpiration and soil evaporation, indicating adequate soil moisture conditions. If crop 
growth simulation modelling would have been used without run-time calibration by 
remote sensing estimates, the effect of sub-optimal fertilizer rates would have been 
simulated less accurately, as demonstrated in Chapter 5. The first hypothesis that 
‘under sub-optimal production conditions, soil and crop processes that cause the 
production limitations can be identified through the integration of multi-sensor and 
multi-temporal measurements and simulation models’ could be validated. 
In Chapter 5 it was demonstrated that integration of leaf area index and canopy 
nitrogen status obtained through remote sensing techniques in a simulation model 
improved simulation results not only for aboveground system state variables, but also 
for system state variables that cannot be derived directly from remote sensing 
information, such as inorganic soil nitrogen contents. The hypothesis that ‘using 
numerical, spatially and temporarily distributed values of selected variables obtained 
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through remote sensing techniques improves the dynamic simulation of the crop-soil 
system’ can therefore be validated. 
The second part of this hypothesis, i.e. ‘the required complexity of the variable 
integration methods depends on the crop production level: simple for potential growth 
conditions to more complex for sub-optimal growth conditions’ could also be 
validated. As demonstrated in Chapter 5, integration of state variables could be 
performed relatively straightforward in simulating potential growth situations. In 
potential growth situations, internal crop balances, such as root/shoot ratios and 
root/shoot nitrogen concentrations follow well-known patterns and can therefore 
easily be converted into explicit equations. Simulating sub-optimal growth conditions 
requires accurate simulation of the soil system to calculate soil moisture and nutrient 
availability. If in a real sub-optimal situation, remote sensing estimates of leaf area 
index and canopy nitrogen deviate from simulated values because of sub-optimal 
growth conditions, internal crop balances can be retained, but as a result, soil state 
variables have to be adjusted for calculated excess or shortage of crop nutrients and/or 
water that is forced on the model in the calibration process. A simple solution for this 
situation is not available, as was demonstrated in Chapter 5. A solution might be to use 
an iterative simulation approach, in which crop growth and crop senescence processes 
are adapted in such a way that the crop and soil system behave more in agreement with 
remotely sensed observations.  
In the current study it was demonstrated that a decision support system based on an 
integration of crop growth simulation modelling and remotely sensed data is attainable 
and that nitrogen uptake and nitrogen distribution within the crop, as well inorganic 
nitrogen in the soil can be simulated more accurately with such a system. Based on this 
information, fertilizer regimes can be fine-tuned and improved. The last hypothesis, 
that ‘multi-sensor and multi-temporal observations linked to dynamic modelling 
improve management decision support systems for environmentally sound agricultural 
production’ could therefore be substantiated. The rate of success however, will depend 
on the factors discussed in this thesis, and on additional factors, such as the costs and 
time needed to obtain remote sensing data and crop growth simulation results. 
 

7.3 Future research and developments 
In this thesis, the scope for integration of remote sensing data with crop growth 
simulation models has been tested and this combination has been shown to be a 
valuable technique for classification and for run-time calibration of crop phenological 
stages, leaf area index (LAI) and canopy nitrogen status (CNS). These canopy 
characteristics are among the most important model driving variables strongly 
influencing simulation results and are the first to be calibrated in formalized model 
calibration. Other system variables may also be of interest, such as canopy 
temperatures, canopy colour and other relevant crop characteristics. These 
observations can be used for integration in crop growth simulation as indicated in this 
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thesis, either for run-time calibration or for supplying other data that result in more 
accurate simulations. 
It may be attractive to derive additional crop state variables from remote sensing data 
and integrate those in crop growth simulation models, especially if the observation 
frequency is high. Increasing observation frequency would eventually provide a 
‘continuous’ monitoring system, yielding information on most aboveground crop 
variables and interactions on a daily or hourly basis, at least during daylight hours. 
Simulation would then be necessary for following crop growth during night time and 
for simulating belowground interactions with the soil system. 
Examples of such additional crop state variables that may be monitored continuously 
through remote sensing techniques are canopy temperatures (as indicators for crop 
water stress) by thermal infrared sensing and canopy colour (as indicator for nitrogen 
deficiency or alert for diseases) by optical remote sensing techniques. Future 
developments may include research on estimation of contents of more specific crop 
components from larger distance, such as chlorophyll, proteins or other valuable 
components by hyperspectral remote sensing techniques. These techniques are 
available for near sensing techniques (e.g. Schut, 2003), but up-scaling has been 
difficult to realize, so far.  
Another opportunity that comes into sight for future research is the spatial analysis of 
specific spatial patterns that can be observed through remote sensing techniques. If 
whole fields can be isolated in remote sensing images, and if the spatial resolution of 
the remote sensing image allows analyzing and recognizing spatial patterns within these 
fields, these patterns may be related to specific diseases or special events, such as the 
outbreak of phytophtera in potato, or lodging in grain crops. Retrieval of such 
vegetation characteristics for crop monitoring is a feature that is practically applicable 
for research purposes and for decision support systems, such as fertilizer 
recommendation systems 
In this thesis, it was demonstrated that it is possible to detect variation in crop growth 
and development at various stages in the growing season through remote sensing 
imagery. When these variations in crop status are used for run-time calibration, as they 
may reflect differences in soil characteristics leading to differences in resource use 
(water, nutrients), future approaches may include 2-D soil modelling and 2-D crop 
modelling. Coupled 2-D soil models with a combination of water and nutrient flows 
do exist, such as FUSSIM (Heinen and de Willigen, 1998), but so far, these have not 
been coupled with 2-D crop models. 
As a start for this approach, point-based models may be applied at spatial scale by 
running them on a grid of pixels or for a set of polygons (identifying groups of pixels 
with more or less the same value) resulting from image analysis and classification 
procedures. These pixels or polygons may contain information from a specific sensor 
or from multiple sensors and may provide quantitative information for a range of crop 
characteristics, such as LAI, CNS, canopy colour and canopy temperatures.  
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Acronyms and symbols 
 
Acronym Meaning Unit 

2-D 2 Dimensional  
3-D 3 Dimensional  
AB-DLO DLO Institute for Agrobiology and Soil Fertility Research  
AVIRIS Airborne Visible Infrared Imaging Spectrometer  
ATSAVI Adjusted Transformed Soil Adjusted Vegetation Index  
AVHRR Advanced Very High Resolution Radiometer  
BACROS BAsic CROp growth Simulator (model)  
BLE Blue Earth (experimental test site)  
BPR Biologically Plausible Range  
BuNaSols BUreau NAtional des SOLS (Burkina Faso)  
CABO-DLO DLO Centre for Agrobiological Research   
CACI Chlorophyll Absorption Continuum Index  
CARI Chlorophyll Absorption Reflection Index  
CFCs Chlorofluorocarbons  
CGM Crop Growth Monitoring  
CGMS Crop Growth Monitoring System  
CIP Centro Internacional de la Papa (Perú)  
CIR Colour Infrared Photography   
CNS Canopy Nitrogen Status  
CPRO-DLO DLO Centre for Plant Breeding and Reproduction Research   
CrOMA Crop Operational Models in Agriculture (project)  
CV Coefficient of Variance  
DAIS Digital Airborne Imaging Spectrometer  
DBMS Data Base Management System  
DG Director General  
DME Desarollo Metodológica Eco-regional (project)  
DN Digital Number  
DoE Date of Experiment  
DoY Date of Year  
DSS Decision Support System  
DVI Difference Vegetation Index  
EFGY Elasticity of Final Grain Yield (-) 
ELCROS ELementary CROp Simulator (model)  
EM Electro Magnetic  
ERS European Remote Sensing satellite  
ERTS Earth Resources Technology Satellite  
ESA European Space Agency  
EVI Enhanced Vegetation Index  
EWS Early Warning System  
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Acronym Meaning Unit 

F735/F700 Chlorophyll Fluorescence Ratio  
FAO Food and Agriculture Organization of the United Nations  
FGY Final Grain Yield (g m-2) 
FOV Field Of View  
FWBI Floating Water Band Index  
GEMI Global Environment Monitoring Index  
GESAVI GEneralized Soil Adjusted Vegetation Index  
GMAP-filter Gamma Maximum A Posteriori filter  
GNDVI Green Normalized Difference Vegetation Index  
GPP Gross Primary Production (g m-2) 
GPS Global Positioning System  
GrainWt Grain Weight (g m-2) 
HRV High Resolution Visible  
IB-DLO DLO Institute for Soil Fertility Research  
IPO-DLO DLO Institute for Plant Protection  
IS Imaging Spectroscopy  
JERS Japanese Earth Resources Satellite  
KAS Calcium ammonium nitrate (fertilizer)  
kL Light extinction coefficient  (m-1) 
kN Nitrogen extinction coefficient  (m2 soil g-1 N)
LAI Leaf Area Index (m2 m-2) 
LeafN Leaf Nitrogen (g m-2) 
LeafNLorg Leaf organic Nitrogen per unit Leaf area  (g m-2) 
LeafNSorg Leaf organic Nitrogen per unit Soil area (g m-2) 
LeafNStot Leaf Total Nitrogen per unit soil area (g m-2) 
LeafNWt Leaf Nitrogen Weight (g m-2) 
MARS Monitoring of Agriculture with Remote Sensing (project)  
MCARI Modified Chlorophyll Absorption in Reflection Index  
MDG Millenium Development Goal  
MDS Management Decision Support  
MIR Middle Infrared  
MP Midi-Pyrénées (French department)  
MSAVI Modified Soil Adjusted Vegetation Index  
MSAVI2 Modified Soil Adjusted Vegetation Index, No. 2  
NASA National Aeronautics and Space Administration  
NDVI Normalized Difference Vegetation Index  
NIR Near Infrared  
NOAA National Oceanic and Atmospheric Administration  
NPP Net Primary Production (g m-2) 
OBS Openbare Basis School  
OSAVI Optimized Soil Adjusted Vegetation Index  
PA Precision Agriculture  
PAC Provence-Alpes-Côte d’Azur (French department)   
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Acronym Meaning Unit 

PAR Photosynthetically Active Radiation (MJ m-2) 
PG Pergamino (experimental test site in Argentina)  
PH Pehuaro (experimental test site in Argentina)  
PlantSys Plant System (model)  
PRI Photochemical Reflectance Index  
PSSRa Pigment Specific Simple Ratio (Chl a)  
PSSRb Pigment Specific Simple Ratio (Chl b)  
PSSRc Pigment Specific Simple Ratio (Carotenoids)  
PVI Perpendicular Vegetation Index  
r2 Correlation coefficient  
RADAR RAdio Detection And Ranging  
RARSa Ratio Analysis of Reflection Spectra (Chlorofyll a)  
RARSb Ratio Analysis of Reflection Spectra (Chlorofyll b)  
RARSc Ratio Analysis of Reflection Spectra (Carotenoids)  
RDBMS Relational Data Base Management System  
RDVI Renormalized Difference Vegetation Index  
REP Red Edge Position  
ReSeDA Remote Sensing Data Assimilation (project)  
RGI Relative Greenness Index  
RMSE Root Mean Square Error  
Rotask Rotation model Agrosystems Innovations (model)  
RS Remote Sensing  
RUE Radiation Use Efficiency (g MJ-1) 
RVI Ratio Vegetation Index  
SAR Synthetic Aperture Radar  
SAVI Soil Adjusted Vegetation Index  
SAVI2 Soil Adjusted Vegetation Index, No.2  
ShootWt Shoot Weight  (g m-2) 
SIPI Structure Independent Pigment Index  
SLAR Side Looking Airborne Radar  
SR Simple Ratio  
StemWt Stem Weight (g m-2) 
SUCROS Simple and Universal CROp Simulator (model)  
SVAT Soil Vegetation Atmospheric Transfer  
T Transmittance fraction (-) 
TIR Thermal Infrared  
TIROS Television Infrared Observation Satellite  
TM Thematic Mapper  
TNUpt Total Nitrogen Uptake (g m-2) 
TSAVI Transformed Soil Adjusted Vegetation Index  
TSP Triple Super Phosphate  
TVI Triangular Vegetation Index  
UV Ultra Violet   
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Acronym Meaning Unit 

VI Vegetation Index  
VIS Visible  
VWO Voortgezet Wetenschappelijk Onderwijs  
WAU Wageningen Agricultural University  
WBI Water Band Index  
WDVI Weighted Difference Vegetation Index  
WUR Wageningen University and Research centre  
XS Multi spectral  

 
 
Symbol Meaning Unit 

λ  Wavelength (nm) 
λrep Red edge position wavelength (nm) 
Rλ  Reflectance at wavelength λ (%) 
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Samenvatting 
In dit proefschrift is onderzocht wat de mogelijkheden en de voorwaarden zijn om 
hoogwaardige gewasgroeimodellen en aardobservatietechnieken zodanige te integreren 
dat ze als geheel een bijdrage kunnen leveren aan het efficiënter gebruik van 
hulpbronnen in de landbouw, risico’s kunnen verminderen die een rol spelen bij 
gewasproductie, de achteruitgang van het milieu kunnen beperken en kunnen bijdragen 
aan de toename van het inkomen van het boerenbedrijf.  
In het verleden hebben zowel gewasgroeimodellen als aardobservatietechnieken op 
individuele basis laten zien dat ze een waardevolle bijdrage kunnen leveren aan 
toepassingen in de landbouw. Voor gewasgroeimodellering bestaan deze waardevolle 
bijdragen o.a. uit betrouwbare oogstvoorspellingen, de prototypering van gewas-
cultivars, het genereren van kengetallen voor verbeterde productietechnieken en de 
teeltbegeleiding op veldniveau. Ook aardobservatietechnieken hebben succesvolle 
bijgedragen geleverd, bv. aan de klassificatie van gewassen en bij het kwantificeren van 
vegetatiekarakteristieken op ruimtelijke en temporele schaal van verschillende grootte. 
Het uitgangspunt van deze studie was de hypothese dat de integratie van beide 
technieken zoveel synergie oplevert, dat het mogelijk is om een teeltbegeleidings-
systeem te onntwerpen op basis van nauwkeuriger simulaties van het bodem-
gewassysteem en zo een belangrijke bijdrage levert aan verantwoord gebruik van 
(natuurlijke) hulpbronnen in de landbouw. 
In het verleden zijn pogingen om gewasgroeimodellering en aardobservatietechnieken 
van elkaar te laten profiteren beperkt gebleven tot het klassificeren van gewassen (om 
het juiste model te kiezen) en het kwantificeren van gewasgroei- en ontwikkelings-
curves, bv. door het schatten van bladoppervlakte uit een tijdserie van aardobservaties, 
voor de calibratie van een gewasgroeimodel voor (vaak) gunstige groeiomstandigheden. 
In een beperkt aantal studies zijn de mogelijkheden onderzocht om aardobservaties te 
gebruiken om simulatiemodellen voor de groei en ontwikkeling van een specifiek 
gewas te initialiseren. In dit proefschrift zijn deze mogelijkheden uitgebreid naar een 
meer dynamische en doorlopende aanpak, waarin aardobservaties niet alleen gebruikt 
worden voor het initialiseren van het model, maar om ook tijdens de simulatieperiode 
op gezette tijden (bij beschikbaarheid van informatie uit aardobservaties), het model 
dynamisch te calibreren (‘dynamische calibratie’). Tijdens zo’n procedure worden 
gesimuleerde waarden van bv. het bladoppervlak (LAI) en de gewasstikstofstatus 
(CNS) vervangen door geschatte waarden die verkregen zijn uit aardobservaties in de 
loop van het groeiseizoen. LAI en CNS zijn belangrijke variabelen die de groei bepalen 
van (landbouw-) gewassen, zoals aardappelen, tarwe en maïs. In dit proefschrift is deze 
dynamische calibratie uitgevoerd in een aantal deelstudies, met simulaties van een 
volledig groeiseizoen onder zowel gunstige als ongunstige groeisomstandigheden. 
Door het toepassen van dynamische calibratie kan ruimtelijk onderscheid gemaakt 
worden in de gewasgroeisimulatie, omdat de variabiliteit in de gewasstatus die het 
gevolg is van lokale verschillen in groeiomstandigheden leidt tot verschillen in de 
signalen die ruimtelijk waargenomen kunnen worden door aardobservatietechnieken.  
In dit proefschrift zijn de relaties onderzocht tussen aardobservaties op blad-, plant- en 
gewasniveau. Bovendien is het effect op uiteindelijke simulatieresultaten (bv. 
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gewasopbrengst) geanalyseerd van onnauwkeurigheden in de schatting van LAI en 
CNS uit aardobservaties, die vervolgens gebruikt zijn voor de dynamische calibratie. 
Aardappelproeven in Nederland hebben aangetoond dat het mogelijk is om 
stikstofwaarnemingen op bladniveau op te schalen naar plant- en gewasniveau, door 
rekening te houden met de vertikale stikstofverdeling in het gewas. Door het toepassen 
van een stikstof-extinctiecoëfficient (kN=0.41) nam de nauwkeurigheid toe van de 
relatie (r2=0.91) tussen SPAD-metingen (een aardobservatietechniek op bladniveau) en 
de stikstofconcentratie in het gewas, uitgedrukt per eenheid bladoppervlakte. 
Aardobservatietechnieken op gewasniveau hoeven geen rekening te houden met de 
vertikale verdeling van stikstof in het gewas als de hoeveelheid stikstof wordt 
uitgedrukt per eenheid bodemoppervlakte, omdat daarmee de hoeveelheid stikstof over 
de gewasdiepte wordt geïntegreerd. De positie van de ‘red edge’ (een index die uit 
aardobservaties bepaald kan worden) gaf een nauwkeurige relatie (r2=0.82) met de 
hoeveelheid stikstof van het gewas (g N m-2 grond). Voor het gebruik in dynamische 
calibratie, kon het bladoppervlak van aardappel (in Nederland) en maïs (in Argentinië, 
Frankrijk en de VS) ook nauwkeurig afgeleid worden uit aardobservaties in het veld, uit 
het vliegtuig en vanuit de ruimte. Het gebruik van LAI waarden die dmv. 
aardobservaties verkregen werden en vervolgens gebruikt zijn voor dynamische 
calibratie waarbij de gesimuleerde stikstofconcentratie in het blad gehandhaafd werd, 
gaf ook nauwkeuriger simulatieresultaten voor de stikstofhoeveelheid in het gewas en 
in de bodem. 
In een deelstudie in het zuidoosten van Frankrijk bleek het mogelijk om in velden met 
wintertarwe, verschillende ontwikkelingsstadia (opkomst, bloei) en teelthandelingen 
(oogst) met succes te identificeren uit informatie van optische en radar aardobservaties. 
Het vaststellen van het moment van deze ontwikkelingsstadia en teelthandelingen is 
belangrijk voor het calibreren van modellen omdat ze de lengte van de groeiperiode 
bepalen, en m.n. de lengte van de korrelvullingsperiode aangeven die medebepalend is 
voor de uiteindelijke korrelopbrengst. Tijdens de bloei is de hoeveelheid verse 
biomassa op het veld maximaal en wordt het radarsignaal van de bodem maximaal 
gemaskeerd door het vocht in het bovengrondse deel van het gewas. Dit kenmerk is 
met succes gebruikt om een regionale schatting van het bloeimoment te maken en dit 
samen met statistische informatie uit bodemkaarten toe te passen voor de simulatie van 
graanproductie op regionale schaal. De voorspelde waarde voor de regionale 
tarweproductie kwam goed overeen met regionale landbouwstatistieken. Deze 
integratie geeft meerwaarde aan het gebruik van bewezen waardevolle (punt-) 
simulatiemodellen, doordat het mogelijk wordt ze ruimtelijk toe te passen en op deze 
manier op te schalen. 
Als de uit aardobservatie verkregen schattingen van bladoppervlakte of stikstofstatus 
worden gebruikt voor dynamische calibratie van gewasgroeimodellen (aardappel en 
maïs), dan neemt de nauwkeurigheid van simulatieresultaten toe voor zowel 
bovengrondse gewasdelen als voor variabelen die niet direct waargenomen kunnen 
worden door aardobservatietechnieken, zoals bv. minerale stikstof in de bodem. De 
mate van succes en de robuustheid van deze geïntegreerde aanpak hangt af van het 
moment, de nauwkeurigheid en het aantal aardobservaties dat beschikbaar is voor 
dynamische calibratie van het model gedurende de simulatieperiode. De 
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nauwkeurigheid van de simulatie met dynamische calibratie was positief gecorreleerd 
met het aantal aardobservaties dat gebruikt werd. Het integreren van informatie uit 
aardobservaties die plaatsvinden rond de bloei hadden het grootste effect op de 
berekende korrelopbrengst, veel groter dan waarnemingen voor of na deze periode. 
Deze studie heeft aangetoond dat een teeltbegeleidingssysteem ontwikkeld kan 
worden, gebaseerd op een dynamische integratie van gewasgroeisimulatiemodellen en 
aardobservatietechnieken. In zo’n systeem worden stikstofopname, de vertikale 
verdeling van stikstof in het gewas en de minerale stikstof in de bodem nauwkeurig 
gesimuleerd en deze informatie kan gebruikt worden voor het aanpassen van 
bemestingsstrategieën, waardoor een belangrijke bijdrage geleverd wordt aan duurzame 
agrarische productiemethoden en een beter milieu. 
Uit dit onderzoek is gebleken dat de nauwkeurigheid van voorspellingen van 
mechanistische gewasgroeisimulatiemodellen significant toeneemt als informatie uit 
aardobservaties op dynamische wijze wordt geïntegreerd. Dit resulteert niet alleen in 
nauwkeuriger schattingen van biofysische variabelen, zoals het bladoppervlak en de 
stikstofstatus van het gewas, maar draagt ook bij aan verbeterde schattingen op 
regionaal niveau. Zulke modellen die betrouwbare voorspellingen van het gewas geven 
op veldniveau, zijn dus effectieve middelen voor het ontwikkelen en evalueren van 
milieuvriendelijke productiemethoden en voor het optimaliseren van het gebruik van 
onze natuurlijke hulpbronnen. 
Vervolgonderzoek zou zich moeten richten op de mogelijkheden om additionele 
gewaskarakteristieken te schatten door middel van aardobservatietechnieken en deze 
op gelijksoortige wijze te integreren in gewasgroeimodellen. Mogelijk kunnen teelt-
handelingen geïnitieerd worden op basis van waarnemingen van additionele gewas-
karakteristieken, zoals: 1) gewastemperatuur, geschat uit thermische aardobservatie-
technieken als indicator voor vochtgebrek, 2) gewasverkleuring, geschat uit optische 
aardobservatietechnieken als indicator voor nutriëntengebrek en 3) gewasstructuur, 
geschat uit radar observatietechnieken als indicator voor de vocht- en nutriënten-
huishouding van het gewas. Aardobservatietechnieken zijn ook bij uitstek geschikt om 
ruimtelijke patronen te herkennen die het gevolg zijn van de lokale 
groeiomstandigheden van het gewas. Patroonherkenning zou gerelateerd kunnen 
worden aan speciale ziektes of speciale gebeurtenissen, zoals de uitbraak van aardappel-
moeheid bij aardappel, of het legeren van granen. 
De verschillende gewassen en de verscheidenheid aan groeiomstandigheden, de 
verschillen in bodemvruchtbaarheid en de verschillen in teelthandelingen die in de 
verschillende deelstudies van dit proefschrift zijn onderzocht, laten zien dat een 
geïntegreerde toepassing van mechanistische simulatiemodellen en aardobservatie-
technieken een brede toepasbaarheid heeft. Er is voldoende om deze geïntegreerde 
techniek aan te passen of uit te breiden voor specifieke toepassingen in het landbouw-
kundig onderzoek, teeltbegeleidingssystemen en voor het genereren van regionale 
statisitieken. 
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