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Abstract 

Jatropha curcas L. is a biofuel crop that has not lived up to expectations due to a combination of hype and 

disappointment and biophysical factors. This PhD thesis is based on the plant production component of the 

JARAK programme which aimed to bridge the gap between truth and fiction. This study reviewed the 

jatropha hype and disappointment and further investigated the hypothesis that jatropha growth and yield are 

limited by biophysical factors of plant characteristics, cropping systems, and management. My review of the 

hype and disappointment shows that despite the high expectations fuelled by market pull and technology 

push, and numerous actors, the commercial potential for jatropha is limited by policy and governance, 

economics, social, technology, logistical, and environmental. A study of the biophysical components 

confirms that no current varieties suited to different cropping systems and locations are available. Jatropha 

aboveground biomass is partitioned predominantly into a structure of stem, branches, and twigs. The below 

to aboveground biomass ratio was 0.5 and fruit which was found only on productive twigs accounted for the 

smallest portion of biomass measured. Seed yields were disappointingly small (109 kg ha-1) and were largest 

in monoculture, followed by intercropping and hedgerows in that order, although yields were influenced by 

age and management of pruning and fertiliser. Seed yield across the three cropping systems can be predicted 

using plant height and the number of productive twig/branch, although the number of inflorescence clusters 

per productive twig may be important. Intercropping between jatropha and maize (Zea mays L.) resulted in 

competition for resources both belowground and aboveground that reduced maize yields. Shoot pruning was 

effective in managing aboveground competition, while root pruning and root barriers effectively managed 

competition belowground. Leaf prunings provided a limited, but positive fertility effect on maize yield 

comparable to 21 kg N ha-1. Jatropha - maize intercropping has potential for long-term productivity provided 

management practices such as fertiliser, pruning, and planting density can be developed to minimise 

competition and enhance complementarity. Based on my review of the jatropha hype and disappointment and 

my biophysical research results, the planting of jatropha by smallholders, or as a plantation crop cannot be 

recommended. Once the issues I highlight have been resolved and market confidence restored, jatropha may 

finally become a commercial source of biodiesel able to provide improved socio-economic and 

environmental benefits. 

 

Key words: Aboveground biomass - Belowground biomass - Competition - Fertility - Hedge - Hype - 

Intercropping - Leaf prunings - Market pull - Monoculture - Productive twig/branch - Pruning - Technology 

push 
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1.1 General introduction 

Jatropha curcas L. further referred to simply as jatropha is a woody perennial with a history of several 

centuries of cultivation and spread across the tropics as a plant with medicinal value. It has in the last decade 

been promoted as a potentially environmentally and socio-economically sustainable biofuel crop for 

renewable energy. This has been triggered by the promise that jatropha would reduce political and economic 

dependence on imported and costly fossil fuels and its associated carbon emissions. Jatropha was seen as a 

way of resolving the food-vs-fuel debate by stating it could be grown on degraded soils not suitable for food 

crops. Jatropha came to be seen as a ‘silver bullet’ solution due to a combination of policy decisions 

regarding energy independency and rural socio-economic development, and investors’ with aspirations for 

quick gains based on cheap land and low labour costs (Slingerland and Schut, 2014). Interest in jatropha 

occurred at a time when the stock market was booming and a lot of venture capital was being invested in 

biofuels. The worldwide hope for a jatropha-based solution, however, became a hype (Achten et al., 2010c; 

Kant and Wu, 2011; Vel, 2014a). 

1.2 The global jatropha hype 

For this study, I define hype as the intensive promotion of a specific solution by the exaggeration of its 

importance, benefits and potential. In this case, the specific solution was based on use of jatropha as a biofuel 

crop. 

 

Starting in the mid-1990s there had been a dramatic increase in environmental awareness and concern 

regarding the impact of climate change and global warming. This has been further compounded by interests 

in energy security and increasing oil prices, necessitating governments to consider alternative fuel sources 

with lower security risks (Simandjuntak, 2014). The response has been an increase in public, political, and 

scientific concern, driven primarily by a desire to reduce CO2 emissions and reduce the dependency on fossil 

fuels (Verrastro and Ladislaw, 2007). Biofuels have been promoted as potential sources of energy that can be 

produced in an environmentally and socially sustainable way. An example of the impact of these concerns 

can be seen in the European Energy and Climate Change Policy that aims to cover 10 % of the European 

transport fuel demand with biofuels by 2020 (Gui et al., 2008; Achten et al., 2010a; Pradhan and Ruysenaar, 

2014). 

 

Biofuels however are not without their critics who draw attention to the economic, social and environmental 

risks involved with large-scale use of biofuels, in particular the fuel versus food debate (Achten et al., 2010a; 

Van Eijck et al., 2014a). Jatropha was promoted as the ideal biofuel crop as it was claimed not to compete 

with food production, deplete natural carbon stocks or threaten biodiversity. Jatropha was depicted as being a 

non-edible, drought tolerant, high yielding species with low fertiliser requirements and having high tolerance 

to pests and diseases. The claimed potential to simultaneously reclaim wastelands, provide fuel and have 

positive socio-economic effects is what attracted so much attention (Abhilash et al., 2011). National 

Governments, Non-Government Organisations (NGOs), International/National Development Agencies, and 
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International investors became aware of a global opportunity for having a clean and secure source of energy 

(Openshaw, 2000; Krijtenburg and Evers, 2014). Jatropha was put at the forefront of having the potential to 

help resolve these multi-faceted concerns (Von Maltitz et al., 2014) and provide a return on investment at the 

same time. 

 

Interest in jatropha took off in developing countries, where governments started to develop policy 

frameworks to simultaneously provide investment incentives, and to regulate biofuel expansion. 

Governments were eager to reap the promised benefits of jatropha (Pradhan and Ruysenaar, 2014; Von 

Maltitz et al., 2014). Individual countries began to see jatropha as politically and morally the best biofuel 

option as it had no known negative impacts on food crop production. 

 

India, the country where the initial positive reports on jatropha originated, developed a National Biofuel 

Policy designed to produce 20 % of total diesel demand from plants by 2017 (Garg et al., 2011). Brazil 

developed what has become a very successful programme where the production, industrialisation, and use of 

biodiesel and biodiesel blends were nationwide goals. The aim was to provide and encourage rural 

employment and community development through the production of biofuel crops, but not at the expense of 

food security (Valdés Rodríguez et al., 2014). Jatropha was only one of many oil bearing plants considered 

(Ramos and Wilhelm, 2005). However, ultimately most biodiesel was produced from already existing 

soybean fields (Watanabe et al., 2012) while interventions aiming to introduce castor (Ricinus communis L.) 

as a new biodiesel crop to lift smallholders out of poverty largely failed to deliver its promises (Dal Belo 

Leite et al., 2013; 2014). In China, the government committed to reducing oil demand and greenhouse gas 

emissions through biofuel development especially from non-food and non-grain fuel ethanol, biodiesel, 

biogas, biohydrogen and other bioenergy products (Chen et al., 2016). Mozambique introduced a biofuel 

strategy aimed at the production of jatropha biofuel feed stocks for the domestic and European Union (EU) 

markets and as a means to develop its rural areas (Slingerland and Schut, 2014). 

 

While the public sector was alive with local and international players examining the feasibility of producing 

biodiesel from jatropha, not all countries fully embraced the concept of planting jatropha. In Malaysia, for 

example the focus was on research and development, and in the commercialisation of biodiesel. The 

Malaysian government did not want to compromise palm oil production by planting large areas of land with 

jatropha (Kalam et al., 2012). Not all programmes succeeded. The Tanzanian Government, for example, 

developed three different jatropha biofuel models, a local rural development model, smallholder out growers, 

and plantations; however their involvement in the continued development was minimal (Van Eijck and 

Romijn, 2008). 

1.3 The jatropha hype in Indonesia and research opportunities 

By the end of 2005, the Indonesian government was viewing jatropha as a biofuel crop with the potential to 

combat increasing world crude oil prices. Oil prices were becoming a burden, made worse by the long 
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history of subsidising fossil fuel retail prices (Bulman et al., 2008). The Ministry of Agriculture started to 

actively encourage farmers throughout the country to cultivate jatropha, by providing inputs and cash 

incentives, but without reliable facts on the performance that could be expected (Vel, 2014a). 

 

Biofuel was further promoted with the 2006 Presidential Instruction on the supply and utilization of biofuel, 

a decree calling for a new ‘National Energy Mix’, and establishing a ‘National Team for Biofuel 

Development to Accelerate Poverty and Unemployment Reduction’ (Fatimah and Yuliar, 2009; Silitonga et 

al., 2011; Vel, 2014a). The government was reported to have committed US$ 1.1 billion in the 2007 national 

budget for biofuel infrastructure subsidies, in addition to subsidies for plantation improvement, training, and 

research and development. The objective was for biofuels to meet 3.7 % of total household and commercial 

use by 2010 (Dillon et al., 2008; Vel, 2014a). The down side to this was the fact that many of the jatropha 

claims were largely based on non-peer-reviewed reports (Jongschaap et al., 2007; Achten et al., 2014; Edrisi 

et al., 2015) and the underlying information could not be verified. 

 

In Indonesia the price of jatropha seed was falling and the Indonesian Government’s fossil fuel subsidies 

were effectively working as a price ceiling for jatropha oil. Farmers were disappointed, and traders no longer 

saw a profit in jatropha. For a while, it seemed as though the jatropha hype was over. Then surprisingly, 

private investors expressed renewed interest and presented business proposals for commercial jatropha 

projects. Despite this renewed interest it seems that many of the schemes proposed did not proceed. While 

there was some minor activity, there were few large-scale plantings (Vel, 2014a). 

 

In 2009 a multidisciplinary Agriculture beyond Food (AbF) programme was set up by the Royal Netherlands 

Academy of Sciences (KNAW) and the Netherlands Organization for Scientific Research (NWO) with the 

Indonesian Ministry of Science and Technology (RISTEK) to foster Dutch-Indonesian research collaboration 

(Löffler et al., 2014). Given the mutual interest in research on agricultural production for bioenergy the 

Jatropha Research and Knowledge Network (JARAK) became one of the research clusters under the AbF 

programme. JARAK is also the Indonesian word for jatropha and is central to ‘JARAK: The 

Commoditisation of an Alternative Biofuel Crop in Indonesia’. The JARAK programme was intended to 

bridge the current gap between the claims on jatropha and actually existing knowledge from legal, 

environment and governance, socio-economic, and plant production aspects that would justify them (Vel, 

2014b). 

 

This PhD was the only research that focused on the plant production component of the JARAK programme. 

In conjunction with this is a literature review of the hype and disappointment cycle presented using a 

modified Gartner model (Chapter 2). This chapter includes results of other JARAK researches that shed 

some light on how the jatropha hype in Indonesia started and was maintained, despite the uncertainty 

surrounding jatropha’s performance. 



General introduction 

5 

1.4 Jatropha 

1.4.1 Distribution 

There is general agreement that jatropha is native to the forests of coastal regions of Mexico and Continental 

America (Achten et al., 2010e). During the sixteenth century commercial plantations for soap and lamp oil 

were established by the Portuguese on the Cape Verde Islands and in Guinea Bissau (Heller, 1996). The 

Portuguese then took jatropha to their colonies in Africa (Mozambique, Angola) and eventually into Asia 

(India, China, and Indonesia) where jatropha is now well established and thriving (Achten et al., 2010e). 

1.4.2 Botanical description 

Jatropha (Jatropha curcas L.) (Euphorbiaceae) is a perennial shrub or small tree often with many secondary 

glabrous and stout branches located at the base, middle or top of a single straight stem. Leaves are green to 

pale-green, smooth, alternate to sub-opposite with a spiral phyllotaxis (Dehgan and Webster, 1979). Leaf 

morphology is variable with length (5 cm to 15 cm) and width (5 cm to 22 cm), while leaf shape may have 2 

to > 6 shallow lobes (Heller, 1996; Sunil et al., 2013). The latex is sticky, white, and normally poisonous 

(Kumar and Sharma, 2008). Seedlings generally have one primary taproot and four lateral roots that are 

distributed symmetrically; however, adult trees develop a more branched root system (Reubens et al., 2011). 

In contrast to this, roots that develop from cuttings do not have a taproot and lateral root development can be 

poor (Kumar and Sharma, 2008). 

 

Jatropha is monoecious, occasionally hermaphroditic with greenish yellow unisexual male and female 

flowers on a racemose inflorescence with a dichasial cyme pattern. The paracladi are formed terminally. 

Jatropha seed yield is highly correlated to the ratio of male (staminate) flowers to female (pistillate) flowers 

(Raju and Ezradanam, 2002). The factors influencing sex expression and alteration are largely unknown 

although temperature, soil moisture and fertility are thought to influence the biochemical mechanisms 

responsible (Makwana and Robin, 2013). Flowering is normally cyclical and occurs during the wet season, 

although continuous flowering has been recorded (Achten et al., 2008). Jatropha is predominantly pollinated 

by insects, especially honey bees; however wind and rain do play minor roles (Divakara et al., 2010). Natural 

pollination has been shown to be more effective than artificial pollination (selfing) at 89.7 % and 32.9 % 

respectively, and only 50 % of flowers set fruit with a fecundity rate of 53 %. Apomixis tends to be high at 

around 32 % and the seed: ovule ratio is around 67 % (Luo et al., 2007). Fruit are ovoid capsules greenish 

brown in colour, 4 cm long and 3 cm in diameter, and weigh 2.0 g to 3.5 g (Heller, 1996). There may be 

three, four, or even five seeds present inside a capsule. Fresh seeds have soft white kernels that when dry 

have oil content between 25 % and 40 % (Heller, 1996; Jongschaap et al., 2007; Divakara et al., 2010). With 

the exception of non-toxic genotypes, all parts of the plant including the seeds are inedible due to toxic 

phorbol esters, curcin, trypsin inhibitors, lectins, and phytates (Contran et al., 2013). 
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1.4.3 Uses and products 

All parts of the jatropha have some beneficial applications for humans and/or animals (Heller, 1996). The oil 

can be used as biodiesel or to make soap. The waste (press seed cake, fruit husk, seed shell) generated by the 

oil extraction process can be used for biogas production or as source of organic fertiliser. Seed cake that has 

been detoxified can be used as cattle feed (Achten et al., 2007; Kumar and Sharma, 2008; Contran et al., 

2013) and proteins may have some potential in human nutrition (Lestari, 2012). Seeds from the non-toxic 

Mexican varieties can be eaten after roasting (Kumar and Sharma, 2008). Jatropha is often used by farmers 

as boundary hedges, or to protect crops from browsing animals (Kumar and Sharma, 2008; Brittaine and 

Lutaladio, 2010). Seedlings and not cuttings are effective in reducing soil erosion due to the taproot which 

cuttings do not have (Reubens et al., 2011). 

1.4.4 Growing environment 

Jatropha is widely distributed and adapted to tropical and subtropical regions, 30° North and 30° South of the 

equator (Jongschaap et al., 2007). Rainfall and temperature are known to affect growth and yield, with soil 

fertility (Openshaw, 2000) and light as contributing factors (Trabucco et al., 2010). While jatropha will grow 

in a wide range of soils, including marginal soils with low nutrient content, it does not grow well on 

waterlogged or poorly drained soils (Achten et al., 2008; Kumar and Sharma, 2008). 

 

Jatropha occurs naturally in regions with a mean annual rainfall of 950 mm, although it can be found in areas 

where the annual rainfall ranges from 300 mm to 3,000 mm (Achten et al., 2008). Optimal temperatures 

range from 10 °C to 45 °C; however when minimum rainfall and temperatures, or maximum rainfall and 

temperatures occur, growth and yields, including oil quantity and quality are compromised (Trabucco et al., 

2010). 

 

During periods of water deficit, jatropha responds by producing higher numbers of adaxial stomata, and any 

water lost through transpiration is replaced by reserves in the stem (Maes et al., 2009). Continued water 

stress leads to leaf fall to minimise transpiration loss (Heller, 1996; Kumar and Sharma, 2008; Maes et al., 

2009). While jatropha is able to minimise drought stress by shedding its leaves and reducing stem, and root 

growth (Achten et al., 2010d; Díaz-López et al., 2012) there is a cost in lost yield (Yeh et al., 2011; Rao et 

al., 2012). Jatropha is insensitive to day length (Achten et al., 2008; Divakara et al., 2010) which means that 

it is possibly a day-neutral plant, a point that could be important in interspecies hybridisation with other 

similar jatropha genus (Basha and Sujatha, 2009). 

 

In Indonesia, jatropha is found growing in areas with a mean rainfall in excess of 3,000 mm per year. These 

locations include Bogor, West Sumatra, and Minahasa (North Sulawesi). Plants growing in these conditions 

often have dense vegetative growth, but very few flowers and fruit. In the village of Cikeusik in Malingping, 

Banten, where the rainfall is slightly less than 2,500 mm to 3,000 mm per year, jatropha has 3 to 4 fruit per 

inflorescence (Rivaie et al., 2006). Research by Indonesian Centre for Estate Crops Research and 
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Development (ICECRD) has highlighted the fact that climate has a significant impact on growth and 

production (ICECRD, 2006). 

1.4.5 Breeding 

Jatropha breeding is still in the early stages, progressing through conventional (Achten et al., 2010e; 

Divakara et al., 2010; Tripathi et al., 2015), mutation (Divakara et al., 2010; Dhakshanamoorthy et al., 2015), 

molecular (Ceasar and Ignacimuthu, 2011; Sun et al., 2012; Osorio et al., 2014; Maghuly et al., 2015), tissue 

culture, and transformation phases (Ceasar and Ignacimuthu, 2011; Joshi et al., 2013; Slingerland et al., 

2014). The key will be to determine the extent of any genetic variation for the desired traits (Rao et al., 2008; 

Achten et al., 2010e) and to use this variation for commercial applications (Salvador-Figueroa et al., 2015). 

 

Global germplasm collection, propagation, breeding, and genetic diversity studies involving hundreds of 

accessions from different continents and countries was carried out by Plant Research International, 

Wageningen University and Research Centre, the Netherlands (Jongschaap et al., 2007; Osorio et al., 2014) 

and by Plant Biotechnology Unit, University of Natural Resources and Life Sciences, Vienna, Austria 

(Maghuly et al., 2015). Germplasm collections, genetic diversity, and breeding studies have also been 

performed in many countries such as India (Basha and Sujatha, 2007; Basha et al., 2009; Maurya et al., 

2015), China (Sun et al., 2008; Shen et al., 2010; Wen et al., 2010), Mexico (Ovando-Medina et al., 2011; 

Pecina-Quintero et al., 2011; Salvador-Figueroa et al., 2015), Brazil (Rosado et al., 2010; Grativol et al., 

2011; Bhering et al., 2013), Malaysia (Arolu et al., 2012; Shabanimofrad et al., 2013), and Indonesia (Hartati 

et al., 2009; Hartati and Sudarsono, 2015; Maftuchah et al., 2015). 

 

The germplasm found in Asia, Africa and South America has been shown to have limited genetic variation 

(Yi et al., 2010; Ovando-Medina et al., 2013) when compared to the Central America accessions, (Osorio et 

al., 2014; Maghuly et al., 2015). The phenotypic variation exhibited is likely to be epigenetic (Yi et al., 2010; 

Osorio et al., 2014; Maghuly et al., 2015), however if the variation is heritable then breeders have the 

opportunity to develop new, high yielding varieties (cultivars). 

1.4.6 Production systems 

Agriculture can be considered a system beginning with national/regional agricultural production systems 

which constitute the highest level organisation pertaining to economic and sociological aspects, to plant 

production systems which represent individual farm enterprises as cropping systems, livestock, aquaculture, 

fisheries, poultry, and forestry, to cropping systems with temporal sequences of crops and management 

practices in individual fields (Connor et al., 2011; Cochet, 2015). Jatropha cropping systems can include 

monocultures, intercropping, or hedges (GTZ, 2009; Wahl et al., 2009; Brittaine and Lutaladio, 2010). 

Monocultures are generally large intensively managed commercial plantings, while intercropping is often 

used by farmers wanting to maximise economic returns, while insuring against the loss or poor performance 

of one crop. Intercropping is of particular value if the two crops have different growth characteristics (Wahl 
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et al., 2009; Brittaine and Lutaladio, 2010). Jatropha hedges are used to define property boundaries or as crop 

protection fencing (Henning, 2001; GTZ, 2009; Wahl et al., 2009). 

 

Jatropha is readily established from seed or cuttings. Cuttings are genetically uniform with rapid 

establishment and early yield development, however they do not produce a taproot, and lateral root 

development is not as good as seedlings. This means greater susceptibility to uprooting by wind (Kumar and 

Sharma, 2008). Cuttings are also reported to have a shorter lifespan and a lower tolerance to water deficit 

(Achten et al., 2008; Brittaine and Lutaladio, 2010). As a result cuttings are not normally recommended for 

intercropping where root competition may be high (Brittaine and Lutaladio, 2010). 

1.4.7 Management 

There is little scientific data available to managers on the commercial growth and development of jatropha. 

Planting densities in monocultures can vary from 1,111 to 2,500 plants per ha (Achten et al., 2008; Wahl et 

al., 2009; Brittaine and Lutaladio, 2010). Plant spacing of 2 m × 2 m, 2.5 m × 2.5 m, 2 m × 3 m, and 3 m × 3 

m are common. Intercrop planting densities can vary from 278 to 1,250 plants per ha with spacings of 2 m × 

4 m, 2 m × 5 m, 3 m × 4 m, to 6 m × 6 m (Achten et al., 2008). Hedges are normally planted as single or 

double rows of plants spaced anywhere from 5 to 50 cm apart (Wahl et al., 2009). 

 

Pruning to control plant size and shape as well as increase the number of new branches that bear 

inflorescence and fruit is a common management practice (Achten et al., 2008; Rajaona et al., 2011). 

Techniques vary, however a common practice is to pinch out the terminal shoots at age six months or cut the 

main stem back to about 30 cm to 45 cm above ground. The objective is to induce lateral branching and 

increase inflorescence and fruit production (Achten et al., 2008; Rajaona et al., 2011). Branch tips can then 

be pruned again at the end of the first year and in subsequent years branches can be pruned by removing 

around two-thirds of their length. It is considered good practice to heavily prune jatropha to 45 cm above 

ground after 10 years to improve yield (Gour, 2006; Achten et al., 2008; Brittaine and Lutaladio, 2010). 

 

Fertiliser application (Patolia et al., 2007; Mohapatra and Panda, 2011) and irrigation (Achten et al., 2008; 

Tikkoo et al., 2013) have been shown to improve yields, however reliable data is lacking. Optimal 

requirements have been shown to vary with age and location (Achten et al., 2008). A short term strategy 

would be to determine the nutrient value of the products removed and ensure replacement, with all non-

commercial biomass retained in the field to improve the soil (Jongschaap et al., 2007). Regular weeding to 

reduce competition is important (Brittaine and Lutaladio, 2010). 

1.5 Constraints to jatropha production 

During the period of this study all across the world the jatropha hype was turning to disappointment. The 

claimed yields of 12 t ha-1 (Openshaw, 2000) or global yield predictions of 5 t ha-1 (Trabucco et al., 2010) did 

not materialise. Actual measured yields varied from < 0.5 t ha-1 to 2 t ha-1 (Edrisi et al., 2015) due in part to 
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the lack of high yielding planting material (Iiyama et al., 2013; Achten et al., 2014; Edrisi et al., 2015). The 

problem is that reliable production data is lacking (Edrisi et al., 2015), especially in regards to breeding, 

management, and pest and disease susceptibility (Achten et al., 2010a; Achten et al., 2014; Van Eijck et al., 

2014a; Edrisi et al., 2015). 

 

While there are constraints to jatropha production, they can be considered particularly relevant to large-scale 

monoculture plantings. Intercropping has been proposed as a feasible alternative to monoculture (Achten et 

al., 2010a; Abhilash et al., 2011). Intercropping can be complementary (positive) or competitive (negative) 

(Rao et al., 1997) to the main crop so these interactions need to be brought into harmony if the intercropping 

is to succeed (Nair, 1993). In particular research is needed to examine yield trade-offs between jatropha and 

the other crops with which it is intercropped and the impact on long-term productivity. 

1.6 Hypothesis and aims 

The research in this thesis focuses on investigating the claims that jatropha is a high yielding crop 

irrespective of its production circumstances. Particular attention is given to the claim that jatropha performs 

well in intercropping. The key hypothesis for this thesis is that jatropha growth and yield are limited by 

biophysical factors of plant characteristics, cropping systems selected, and management practices imposed. 

Conceptually, the study was approached from three different perspectives: jatropha characteristics, system 

productivity, and management (Figure 1.1) each with its specific questions. The overall aims are first to 

understand the aspects of above and belowground biomass allocation using a modelling based approach that 

includes plant architecture. Second to use this knowledge to evaluate growth and yield in monoculture, 

hedge, and intercropping systems with different management options that can be incorporated into the final 

model to determine long-term productivity and trade-off analysis. 

 

 
Figure 1.1 Flow-chart outlining the research strategy. 
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In order to understand the potential and limitations on jatropha growth and yield, and to guide the research, 

the four following specific research questions were formulated: 

 

 What are the above and the belowground biomass allocations, including the harvest index? (Chapter 

3). 

 What is the relationship between seed yield and vegetative plant components under different 

management and cropping systems? (Chapter 4). 

 What types of interactions occur during tree-crop and tree-tree resource capture? (Chapter 5). 

 What are possible long-term productivity and yield trade-offs under different management scenarios? 

(Chapter 6). 

 

Specific hypotheses and objectives regarding jatropha performance and the usefulness of different models to 

assess this performance were developed to guide the research (Table 1.1). 

 

Table 1.1 Specific hypotheses and aims for individual research chapters. 

Thesis Hypothesis Aims 

Chapter 3 Functional branch analysis (FBA) model that 

takes plant architecture into account to 

estimate above and belowground biomass, 

including the harvest index. 

Determine allometric equations for above and 

belowground biomass, including the harvest 

index using FBA model (for tree database 

construction). 

Chapter 4 The relationship between seed yield and 

vegetative plant components can be 

determined in different management (pruning 

and plant spacing) and cropping systems 

(monoculture, intercropping, and hedge). 

Determine seed yield and vegetative plant 

components that influence seed yield under 

different management and cropping systems. 

Chapter 5 Jatropha provides not only positive benefit to 

the growth and yield of maize intercrop 

through incorporation of mulch, but also a 

negative effect to maize growth and yield 

through below and aboveground resource 

competition. 

Evaluate resource competition for belowground 

(soil water and nutrient) and aboveground 

(light capture) that influences maize growth 

and yield in the jatropha – maize intercropping 

system. 

Chapter 6 Tree-soil-crop simulation modelling 

considering water, nutrient and light capture 

in agroforestry systems (WaNuLCAS) can 

estimate long-term productivity and yield 

trade-offs under different management 

intercropping scenarios. 

Evaluate long-term productivity and yield 

trade-offs between jatropha and maize 

intercropping under different management 

scenarios using WaNuLCAS model. 
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1.7 Study sites 

This study was conducted in two separate locations in Indonesia; monoculture and intercropping studies 

were conducted at the Mulo Village in the Wonosari District, Gunungkidul Regency of Special Province 

Yogyakarta. A hedge study was conducted at the Leseng Village in Moyo Hulu District, Sumbawa Besar 

Regency - Nusa Tenggara Barat Province (Figure 1.2). 

 

Gunungkidul site has an equatorial rainforest climate (Kottek et al., 2006) with mean annual rainfall of 1,800 

mm, occurring predominantly from November to April with dry periods from June to August or September. 

Mean annual temperature and relative humidity are 26 oC and 70 % respectively. The soils are Mollisols 

(Srijono and Sunarminto, 2005; Hanudin et al., 2012) with texture varying from clay, silty clay to silty clay 

loam. The soils are shallow, 10 to 50 cm deep with limestone beneath. 

 

The Sumbawa site has an equatorial savannah climate (Kottek et al., 2006) with average annual rainfall of 

1,450 mm from November to April or May and dry periods from June to August or September. The average 

annual temperature and relative humidity are 28 °C and 79 %. The soils are clay loam Inceptisols (Trianasari, 

2009). 

 

 
Figure 1.2 Map of Indonesia showing the Gunungkidul (Yogyakarta) and Sumbawa Besar research sites. 

 

Substantial difficulties were experienced in identifying suitable experimental sites hence the necessity for 

different locations. This was partly due to many of the original jatropha plantings being removed or 

abandoned as a result of the disappointment during the period between proposal writing and actual start of 

the field research. I searched for sites based on the following criteria: 

 

 Farmer and organisation with established jatropha plantings in different cropping systems and 

different areas. 
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 University or government research stations open to the possibility for collaborative research and 

sharing of information on jatropha growth and yield. 

 Companies willing to co-invest in research on jatropha management in their plantations with the aim 

to improve their performance in the longer term. 

 University with open laboratory access and willing students to assist in data measurement and 

collection in return for site access for their thesis research. 

 Access to a weather station within the local area. 

 All weather road access and the availability of local transportation. 

 Access to a reliable workforce to assist with daily management tasks. 

 Location that is safe and secure where cattle are not grazed uncontrolled and wild fires are not a 

problem. 

 Sites without land conflicts. 

 

Although government institutions/research centres, companies, and farmers were willing to discuss their 

jatropha ventures, field visits were not always permitted. Concerns were raised regarding the possibility that 

Wageningen University would steal their planting material. Given the claimed large yields related to these 

planting materials the main fear may have been exposure that their claims were unjustified. There were also 

concerns from companies who were using imaginary or uprooted jatropha plantings as collateral for bank 

loans that they might be exposed. Sites that were visited often revealed jatropha plantings with large 

differences in height, development and performance of individual trees, irregular planting distances and 

pruning regimes, and hardly any maintenance. These sites were unsuitable for the establishment of 

experiments. 

 

In Sumbawa a company was ready to co-invest in research on hedges and allowed the design and 

establishment of an experiment. In Gunungkidul access to an existing rather homogenous plantation of trees 

of different ages was successfully negotiated as well as access to spare land to design and establish the 

intercropping experiment. Originally the research was intended to be a combination of on-farm and on-

station research. However, when considering the research with the on-farm cultivated jatropha it became 

clear that most farmers had uprooted and/or abandoned their jatropha hence no on-farm measurements were 

performed. Therefore, I chose to focus solely on the on-station sites. The reasons behind the uprooting and/or 

abandonment of jatropha are addressed in Chapter 2. 

1.8 Thesis outline 

This thesis is comprised of seven chapters. 

 

Chapter 1 is the general introduction containing the background, problem statement, research gaps, and 

research hypotheses, objectives, and framework. 
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Chapter 2 is a literature review of the jatropha hype and the disappointment that occurred during the 

duration of this study. The chapter uses the Gartner model to describe factors of market pull, technology 

push and in particular the factors that were instrumental in the jatropha disappointment. By addressing the 

reality cycle of the jatropha hype and disappointment we are able to explore the possibility of a continual 

decline or recovery. 

Chapter 3 determines allometric equations for above and belowground biomass, including fruit biomass 

using FBA model. The FBA model is used because it is a non-destructive method and takes into account 

plant architecture and can be modified to determine the harvest index. FBA allometric equations generated in 

Chapter 3 are used in Chapter 4 to determine aboveground biomass, and will serve as tree database in the 

WaNuLCAS model for use in Chapter 6. 

Chapter 4 investigates seed yield and vegetative plant component interactions under different management 

practices in monoculture, intercropping, and hedge cropping systems. This study tests the findings from 

Cgapter 3 under different management practices and cropping systems. Management practices used for 

monoculture are aboveground pruning and no pruning, for intercropping it is with and without mulch, and 

polythene root barriers, and for hedges it is pruning and no pruning in combination with different pruning 

heights (in monoculture hedge) and plant spacing (in mixed hedge). 

Chapter 5 investigates maize growth and yield in response to direct competition for below and aboveground 

resources, or indirectly through modification of soil conditions that produce interaction in maize-jatropha 

intercropping systems. The effect and interaction components are explored by comparing a jatropha-maize 

intercropping system with maize monoculture, with and without mulch and polythene root barriers. A lack of 

jatropha intercropping research, including the effects of mulch and above and belowground pruning on 

annual crop performance prompted this study. 

Chapter 6 investigates jatropha and maize long-term productivity and yield trade-off in intercropping 

systems using the WaNuLCAS model. Findings from Chapter 3, Chapter 4, and Chapter 5 are used to 

calibrate and validate the model under different management scenarios. Research relating to long-term 

jatropha productivity is limited, especially for intercropping systems and yield trade-off assessments. 

Chapter 7 is a general discussion focussing on the plant production factors of jatropha as a biofuel crop. The 

study contributes to the body of scientific knowledge and existing knowledge gaps are identified for future 

research recommendations. In conclusion, I outline a series of constraints, challenges, and opportunities for 

jatropha development. 
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Abstract 

Interest in jatropha as a biofuel crop has been driven by economic concerns over limited oil reserves and the 

global price of crude oil. Jatropha was claimed to offer a clean source of renewable energy with advantages 

at the national to individual household levels. Jatropha proponents further claim that it does not impact on 

food security due to its toxicity, whilst offering the added benefits of erosion control, soil enrichment, water 

infiltration and flood reduction, carbon storing, and the possibility of earning carbon credits. Many of the 

claims put forward were based on optimistic assumptions, especially regarding yield and the early warning 

signs and calls for caution largely ignored, buried or overtaken by the wave of hype. The modified Gartner 

hype and disappointment cycle highlights that jatropha has been through multiple hype cycles dating back to 

1945-50. The disappointment observed during the first hype could simply be attributed to a very specific 

need that was no longer required. The second and subsequent cycles share many similarities and resemble 

other miracle new crops. A combination of market pull (society, economy, environment and government 

mandates, subsidies, land allocation, and investors) and technology push factors (oil processing and value 

adding) that were not sufficiently well prepared or developed, and implemented within the framework and 

guidelines necessary for realistic commercial development were responsible for the disappointment. JARAK 

research in Indonesia further highlights the fact that many actors exploited the system for personal gain. 

Policies were often influenced by a network of powerful entrepreneurs who manipulated the process for 

personal gain. Companies and NGO’s were able to access subsidies or bank loans and investment funds to 

develop large or smallholder jatropha plantations, while brokers successfully managed to get a piece of the 

subsidy cake. Researchers were able to access numerous research funds. While smallholders were often 

depicted as victims of land grab there were many who joined in the exploitation of jatropha. In hindsight it is 

easy to see why the jatropha hype ended in disappointment. From our review it is clear that jatropha was 

introduced without a comprehensive understanding of crop development and performance and market supply 

and demand. 

 

Key words: Biodiesel - Biofuel - Disappointment - Gartner model - Hype - New crop - Supply chain - Value 

adding 
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2.1 Introduction 

Interest in jatropha as a biofuel plant is not new. In the first half of the 19th century jatropha was cultivated 

commercially in Cape Verde, West Africa, and Madagascar with the seeds exported to Lisbon and Marseille 

for oil extraction and soap production. In Cape Verde some 16 % of cultivated land was under jatropha, 

contributing up to 60 % of its agricultural export value (Heller, 1996). The advent of cheaper synthetic 

detergents however soon meant jatropha production was no longer viable (Wiesenhütter, 2003). 

 

During the Second World War shortages of fossil fuel renewed interest in jatropha, this time as a source of 

biodiesel. In Segou - Mali (Heller, 1996), Madagascar, Cape Verde, and Benin (Foidl et al., 1996) jatropha 

oil was produced for use in army tanks and in lamps (Koizumi, 2013), while its glycerine by-product was 

valuable for the manufacture of nitro-glycerine (Brittaine and Lutaladio, 2010). During Japanese colonisation 

of Indonesia the planting of jatropha and castor oil were mandatory. The seeds were sent back to Japan for 

oil extraction and military use (Afiff, 2014); however, once the war was over there was no longer a market 

for jatropha oil. 

 

The Gulf war of 1980s saw a rise in the price of crude oil with Nicaragua (Foidl et al., 1996), Cape Verde 

(Wiesenhütter, 2003), India (Patil and Singh, 1991) and Mali (Henning et al., 1994) all experiencing interest 

in the cultivation of jatropha for biodiesel. Ultimately the jatropha hype turned to disappointment as the price 

of crude oil dropped. The price drop was compounded by low yields of what is essentially an undomesticated 

crop with high processing costs (Foidl et al., 1996; Jongschaap et al., 2007). Ultimately jatropha was once 

again found to be unprofitable (Nielsen et al., 2013) and many jatropha projects were abandoned (Gaul, 

2012). 

 

Then in the mid-2000s there was renewed interest in jatropha biodiesel, triggered once again by the high 

price of crude oil. The jatropha hype this time was more substantial as there were claims by governments, 

universities, and private companies and NGOs (Vel et al., 2013; Afiff, 2014; Simandjuntak, 2014) that 

jatropha was the miracle plant, or as some put it, green gold. Once again the price of crude oil plummeted 

and when combined with the low and inconsistent yields, it was obvious that there was no financial 

advantage in cultivating jatropha for biodiesel (Nielsen et al., 2013). 

 

It is clear that the lessons of past jatropha hype and disappointment had not been learnt by those involved 

including governments, private sector, non-government organisations and research institutes. It seems that 

whenever there has been a crude oil crisis in the world due to reduced production and variations in demand 

and supply such as witnessed in 1990s, and 2000s, interest in jatropha oil as a potential source of energy 

resurfaces (Tahir et al., 2012). 
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In this chapter I discuss the jatropha hype and disappointment from a global perspective using a modification 

of the Gartner’s model (Fenn and Raskino, 2008). It discusses the jatropha hype and disappointment using 

market pull and technology push factors, identifies the current jatropha status, and outlines the lessons learnt. 

My primary focus is on jatropha biodiesel; however I sometimes use the broader term of biofuel; this 

encompasses biodiesel and other energy sources such as bioethanol. My objective is to review the factors 

responsible for the hype and disappointment and not to investigate detailed or specific differences between 

countries. 

2.2 Hype and disappointment cycle 

The hype and disappointment cycle has been used to study the excitement or expectations, and 

disappointment of many technological innovations such as stationary fuel cells (Ruef and Markard, 2010), 

biofuels, hydrogen, and natural gas (Alkemade and Suurs, 2012). Biofuel encompasses solids such as fuel-

wood, charcoal and wood pellets; liquids such as bioethanol, biodiesel, and pyrolysis or gases such as biogas 

that are predominantly produced from biomass (Demirbas, 2006; FAO, 2008).  

 

The jatropha hype and disappointment should not be confused with the commodities boom and bust cycle 

(e.g. crude oil, gold, sugar, and palm oil) that happens periodically in the global economy. Despite the 

similarities of supply and demand and the availability of capital and future expectations, a true market for 

jatropha biofuel never really developed (Vel. 2014a). This aspect is important as the reference to market pull 

later in this article refers to a perceived need for jatropha and not to a real market. The term hype and 

disappointment cycle is therefore considered more appropriate, consistent with Affif (2004) and Vel (2014a). 

 

To better understand jatropha in the context of the hype and disappointment cycle, I have used the 

framework developed by Gartner (Fenn and Raskino, 2008). Gartner’s hype and disappointment model 

describes the path a technology takes over time in terms of expectations of the value of the emerging 

technology. The model proposes that technology progresses through successive stages. The first stage is the 

hype and is characterised by highly optimistic expectations which results in a peak of inflated expectations. 

This phase is followed by a performance and results phase that ultimately leads to a trough of 

disillusionment. It is here that progress in engineering and business maturity becomes important and may 

result in a slope of enlightenment and a mature technology and fast adoption leading to the plateau of 

productivity (Fenn and Raskino, 2008). 

 

The Gartner model is not without its limitations. Borup et al. (2006) considered that the model was too 

general and did not allow for variation and unpredictability within different technologies, socio-economic 

contexts and actors involved. Steinert and Leifer (2010) found that the model produced imprecise, 

inconsistent and subjective predictions. It also does not address the fact that expectations can be negative 

(Van Noordwijk et al., 2010). Despite these limitations Dedehayir and Steinert (2016) considered that the 

hype dynamics could be captured through the identification of peak, disappointment, and recovery patterns. 
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The Gartner hype-disappointment cycle has been adjusted and uses four specific stages; 1) pre-hype, 2) hype, 

3) disappointment, and 4) reality check to better reflect jatropha's circumstances (Figure 2.1). 

 

 
Figure 2.1 A generic hype and disappointment illustration of jatropha development from 1945s to present 

day [modified from the Gartner hype cycle based on Fenn and Raskino (2008)]. 

 

Pre-hype is the condition and usage prior to hype and it is often this aspect that triggers the initial interest. 

Hype is the rise in expectations triggered by market pull (Section 2.3.1) and technology push (Section 2.3.2) 

often heavily promoted by government, media, academia, researchers, investors, international organisations, 

and brokers (Vel. 2014a). Market pull refers to the need for a new product or a solution to a problem 

(Boehme, 1986; Bullinger, 1994; Brem and Voigt, 2009). A product, or a range of products, is then 

developed to solve this need. Technology push refers to the effect of research to drive development of the 

new product. It usually does not involve market research and often occurs by applying innovative technology 

to an existing product (Boehme, 1986; Bullinger, 1994; Brem and Voigt, 2009). Disappointment (Section 

2.4) occurs when commercial expectations fail to meet performance and/or revenue expectations (Fenn and 

Raskino, 2008). A reality check is a necessity at the end of any hype and disappointment cycle. There are 

two possibilities; the first is renewed commercial interest which results in Gardner's slope of enlightenment 

with increased net benefits and motivation. The second possibility not mentioned in Gardner's model is the 

lack of any slope of enlightenment and/or a reversion to the status quo. 

2.3 Hype 

Pre-hype expectations for jatropha were limited to local and traditional medicinal use (Figure 2.1). While all 

parts of the jatropha plant i.e. leaf, bark, latex, root, and seeds are toxic they do have antimicrobial and blood 

coagulating properties that are of value for humans and animals (Heller, 1996). In many tropical and 

subtropical countries, jatropha is planted as hedges or living fences for land demarcation and/or as barriers 

protecting crops from browsing livestock (Kumar and Sharma, 2008; Brittaine and Lutaladio, 2010). The 
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extracted oil has long been used to provide light in rural areas (Brittaine and Lutaladio, 2010) and in the 

production of soap. 

2.3.1 Hype: market pull 

Interest in jatropha increased with each hype cycle (Figure 2.1) to the point where the hype created by 

market pull was essentially driven by societal and economic concerns of limited oil reserves, and the 

expectation that extraction costs would continue to impact on the global price of crude oil. This concern 

fuelled the desire to reduce dependence on fossil fuels (Campiche et al., 2007; FAO, 2008; Al-Riffai et al., 

2010; Moschini et al., 2012). In addition oil price instability due to regional conflicts and political turmoil in 

the Middle East and other oil-producing regions, were having negative impacts on the world economy 

(Campiche et al., 2007; FAO, 2008; Al-Riffai et al., 2010; Moschini et al., 2012). Environmental concerns 

over climate change and the need to reduce greenhouse gas (GHG) emissions further prompted many 

countries to reassess their bioenergy strategies as key elements in their efforts to mitigate climate change. 

Biofuels were seen as offering the potential for reducing GHG emissions (FAO, 2008). The claims and 

promotion of jatropha as a source of biodiesel were seen as a positive solution to the energy crisis problem. 

In addition to societal, economic, and environment concerns, the hype created by market pull was enhanced 

by government support in providing mandates, subsidies, and incentives designed to promote demand and 

create biodiesel market. This was particularly evident during energy crisis in 2000s. 

2.3.1.1 Societal, economic, and environmental drivers 

The societal and economic aspects of market pull for jatropha was mainly driven by the need to develop 

biodiesel as part of the energy crisis problem-solving. Jatropha was promoted to enhance socioeconomic 

development (Brittaine and Lutaladio, 2010) by creating employment, increasing revenues for poor rural 

farmers and offering energy self-sufficiency for small communities (Fairless, 2007; Van Eijck et al., 2014b; 

Fatimah et. al., 2015). 

 

Jatropha was not seen as part of the food-versus-fuel debate because it was inedible and supposedly able to 

reclaim marginal and degraded soils (Reubens et al., 2011; Valdés-Rodríguez et al., 2013) without 

competing with food production, depleting natural resources or reducing ecosystem services (Francis et al., 

2005; Fairless, 2007; Carels, 2009). 

 

In Indonesia the concept of marginal land was broad covering degraded, underutilised, and neglected land. 

Combined with the claim that jatropha could flourish and be productive in dry and barren lands and could 

even improve soil conditions in degraded lands, the Indonesian Agency for Agricultural Research concluded 

in 2007 that 50 million hectares were suitable for jatropha growing (Gunawan, 2014). Maps were developed 

based on rainfall and altitude and used to support the belief that jatropha would be a good investment in 

marginal areas (Van Rooijen, 2014b). 
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Jatropha was reported as being able to produce up to 12 tons of seed (Jones and Miller, 1993; Openshaw, 

2000) which was equivalent to 3 tons of oil per hectare per year (Francis, 2012). Due to its toxicity jatropha 

is not browsed by animals allowing farmers to use the plant as living fences to protect food crops (Heller, 

1996; Brittaine and Lutaladio, 2010). Other claimed advantages included jatropha's resistance to drought and 

pests, and its ability to grow with limited irrigation and agricultural inputs (Openshaw, 2000; Francis et al., 

2005; Garcia-Almodovar et al., 2014). Jatropha offers a variety of potential by-products (Kumar and Sharma, 

2008; Contran et al., 2013) such as jatropha seed cake which is a source of organic fertiliser rich in essential 

proteins. When detoxified it can be used as a high quality livestock feed (Openshaw, 2000; Martínez-Herrera 

et al., 2006). 

 

Overall the production and use of jatropha biodiesel shows potential for reducing non-renewable energy 

requirements leading to reduced greenhouse gas emissions when compared with fossil diesel fuel (Ou et al., 

2009; Achten et al., 2010b; Gmünder et al., 2012). The environment aspect of market pull was driven by the 

potential for the allocation of carbon credits through the establishment of small-scale reforestation projects 

(Van Rooijen. 2014b). Life cycle assessment (LCA) studies claimed that jatropha could be a promising crop 

for carbon sequestration (Achten et al., 2007), especially when grown on wastelands or degraded lands 

(Romijn, 2011) and had the potential to attract carbon credits under the clean development mechanism 

(CDM) (GEXSI, 2008; Ndong et al., 2009). Estimates concerning carbon capture from jatropha plantations 

varied substantially with age, management practices, and carbon content assessment (Romijn, 2011). In India 

for example, 3.5 year old jatropha at 1,667 plants per ha-1 would have an annual sequestration rate of 

approximately 0.9 t CO2 ha-1 yr-1 (Reinhardt et al., 2007; Romijn, 2011). While a similar planting density on 

degraded lands has a reported sequestration rate of 5.3 t CO2 ha-1 yr-1 (Wani et al., 2012). 

 

Moreover the production and use of jatropha biodiesel or jatropha methyl ester (JME) in general show 

reductions in non-renewable energy requirement (e.g. net energy ratio, NER) and in GHG emissions or 

emission saving (e.g. global warning potential, GWP) (Ou et al., 2009; Achten et al., 2010; Gmünder et al., 

2012) compared to fossil-fuels based. In India for example results show an 82 % reduction in non-renewable 

energy requirement and a 55 % reduction in GHG emissions compared to the fossil diesel fuel system 

(Achten et al., 2010b). In China however these results have been calculated at 75 % reduction in non-

renewable energy requirement and a 49 % reduction in GHG emissions (Ou et al., 2009). 

 

A further motivation for jatropha biodiesel was the expectation that it would reduce erosion and retain soil 

moisture, especially as it could be grown successfully on marginal or degraded lands. An example of the 

environmental benefits of jatropha can be found in Ethiopia where for over 40 years jatropha has been used 

as living fences and hedges on contour lines across slopes and in gullies to conserve land and water and fight 

erosion (Portner et al, 2014). 
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2.3.1.2 Government support 

Government support comprised a combination of legislation, policies, subsidies and incentives, all designed 

to encourage investment from national, bilateral or multilateral sources (Jull et al., 2007). Many countries 

including Indonesia (Dillon et. at., 2008) introduced mandatory, voluntary, or indicative biofuel targets, 

together with specific subsidies (Hasan, 2012). By promoting jatropha through legislation, policies, and 

subsidies and in setting targets, governments were actively displaying commitment to the community and the 

environment (European Commission, 2007; Sorda et al., 2010; Rajcaniova et al., 2015).  

 

It is important to understand that government actions may always be subject to political process and pressure 

from interest groups (Rajcaniova et al., 2015). This was most certainly evident in Indonesia (Affif. 2014; 

Simandjuntak, 2014). Vel et al. (2013) argues that policies are often influenced by a network of powerful 

entrepreneurs who influence or manipulate the policy process for personal gain. This belief is supported by 

previous research on agrarian change, state-society relations and local politics where societal change and 

policy implementation is considered simply as a technique between influential actors to gain mutual benefits 

within their networks’. For a more comprehensive overview of international biodiesel/biofuel policy and 

regulation the reader is directed to the following; FAO (2008), Sorda et al.(2010), Rajcaniova et al. (2015), 

and Su et al. (2015). 

Biodiesel policies and blending targets 

Many of the policies developed for jatropha biodiesel were based on claims that jatropha was the solution to 

the energy crisis. India and China for example developed biodiesel policies specifically for non-edible seed 

oils. In India, jatropha was regarded as suitable feedstock for production of biodiesel as it did not compete 

with food crops (Kumar and Sharma, 2011; Bandyopadhyay, 2015). In China where arable land was limited 

and populations dense, use of food-based crops for biodiesel was restricted (Weyerhaeuser et al., 2007) so 

jatropha was an alternative choice mainly to be planted on wasteland. In Indonesia, government interest 

focussed on the possibility of improving rural energy self-sufficiency and reducing the fuel-subsidy burden 

through the production of jatropha biodiesel (Fatimah et. al., 2015). In addition, this programme would foster 

job creation and poverty alleviation that came from energy self-sufficient villages (ESV). 

 

The 2003 EU target of 5.75 % share of biofuels in transport fuel by 2010 and 10 % by 2020 (Directive 

2003/30/EC) were perceived by investors as an opportunity to invest in biofuel production in developing 

countries (Von Maltitz et al., 2014) for import into the EU. Developing countries were interested in 

producing biofuels for their own markets as well. In 2003, the Indian government proposed a 5 % biodiesel 

blending target beginning 2006-2007 aimed at planting jatropha in 0.4 million ha of wastelands, gradually 

raising it to 20 % in 2011-2012 with 13.4 million ha (Government of India, 2003). Further the Indian 

Planning Commission anticipated that this would generate employment opportunity for rural areas 

(Ravindranath et al., 2011). 
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In 2005, China initiated a renewable energy law to support biofuels by providing a set of directives 

encouraging the development of jatropha. This included national planting targets, blending targets, subsidies, 

tax relief or exemptions, and technological research and demonstration projects (Wang et al., 2010; Li et al., 

2014b). The total jatropha planting target was 1.67 million ha on barren hills and wastelands over the next 

10-15 years at Yunnan, Sichuan, and Guizhou of the Southwest China (Wu et al., 2010). Biodiesel blending 

targets ranged from 2 % to 5 %. 

 

In early 2006 the Indonesian government aimed to plant 1.69 million ha of jatropha (Dillon et al., 2008). In 

2008 mandatory levels of biofuel consumption were introduced at 2.5 % for 2010 aiming to reach 20 % by 

2025 (Dillon et al., 2008). The investments anticipated the creation of 100,000 skilled and up to 10 million 

unskilled jobs by 2009 (Dillon et al., 2008). Legowo (2008) reported that 121,000 plantation jobs had been 

generated in the jatropha industry by June 2008. 

Subsidies for planting and/or oil processing 

In several countries governments introduced subsidies for planting and/or oil processing. It was intended that 

subsidies would offset the costs of production, thereby increasing supply and lowering market prices 

(Drabik, 2011) Subsidies were effective in motivating farmers to plant jatropha as it allowed them the 

opportunity to become involved without experiencing financial risk (Kumar et al., 2012; Van Eijck et al., 

2014b). Subsidies for jatropha planting were for instance available in India (Axelsson et al., 2012), 

Southwest China (Weyerhaeuser et al., 2007), Mexico (Skutsch et al., 2011; Valdés Rodríguez et al., 2014), 

and Indonesia (Dillon et al., 2008). 

 

In India, farmers were promised subsidies for purchasing and planting jatropha seedlings and direct financial 

support for land preparation, pitting and planting, irrigation, fertiliser and manure purchase, and pesticides 

(Axelsson et al., 2012). In China, the farmers received subsidies for each hectare of jatropha plantation 

(Wang, 2012), although only for the first year. Price guarantees for the purchase of jatropha seed were also 

available (Li et al., 2014b). Subsidies could also be obtained for the construction of jatropha refineries 

(Wang, 2012; Li et al., 2014b). Subsidies for jatropha in the first year were available in Mexico per ha 

planted as jatropha was classed as an afforestation species (CONAFOR, 2009). Free seeds and an offer of 

120 minimum wages per year were on offer during 2008 and 2009, increasing to 135 minimum wages the 

next year. The support however was conditional on the establishment of at least four ha with 1,600 plants per 

ha and a survival rate of 70 % during the first year (Valdés Rodríguez et al., 2014). In Indonesia in 2006 the 

government spent US$ 860,000 on producing jatropha seeds for distribution. In the same year, US$ 3.5 

million was announced to be allocated to build five jatropha seedling facilities (Dillon et al., 2008). Subsidies 

were available for nursery establishment, planting, and fertilisers (Vel et al., 2013; Widjaya, 2014) and oil 

processing refineries (Van Rooijen, 2014b). 
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Incentives or other supporting instruments 

Incentives were implemented to encourage the production, use of jatropha through value added taxes, 

corporate taxes, and excise taxes as well as credit facilities or low-interest loans and loans for cultivation or 

for the construction of processing facilities (Jull et al., 2007). 

 

In India in 2003 a package of tax reductions, credit provision through national banks that facilitated access to 

land was available for the development of jatropha or for contract farming schemes with smallholders (Lima, 

2012). In China biodiesel was exempt from consumption tax and in 2008 it was announced that 90 % of the 

income tax on biodiesel would be reduced. In addition if more than 70 % of the raw material used was from 

plant oil or waste animal fat, the value-added tax would be refunded to producers (Wang et al., 2010). In 

2006 the Indonesian government allocated US$ 6.6 million for training to improve farming skills for 

producing jatropha seed (Dillon et al., 2008). In addition to this specific incentives relating to taxation and 

government charges were introduced to attract and motivate investors (Ariati, 2007). The biofuel programme 

in Indonesia in 2007 succeeded in receiving 67 contracts with an estimated investment value of US$ 12.4 

billion (Bromokusumo, 2007). 

2.3.2 Hype: technology push 

The technology push component of the jatropha hype refers to the research and development where the 

primary purpose was to enhance jatropha commercialisation. Technology push often starts with the 

development of an innovative technology and applying it to a product for marketing (Boehme, 1986; 

Bullinger, 1994; Brem and Voigt, 2009). The jatropha technology push was not only supported but as much 

invented by academia (Afiff, 2014), state-owned enterprise elite (Simandjuntak, 2014), government 

agencies, private companies, and engineering research centres (Widodo and Rahmarestia, 2008). The focus 

was primarily on research and development to improve the processing techniques, jatropha biodiesel 

properties and performance testing, developing standardisation, and engineering (see review in Koh and 

Ghazi, 2011; Atabani et al., 2013). 

 

In 2004 jatropha biodiesel was used in India for vehicle tests covering 6,000 km (Ghosh et al., 2007a). In 

2006 in Indonesia jatropha biodiesel cars covered a distance of 3,200 km as part of a promotion tour (Afiff, 

2014). In each country the test drives using jatropha biodiesel and the huge media coverage of these events 

triggered widespread interest and enthusiasm (Afiff, 2014). At the international level in 2008 an Air New 

Zealand aircraft flew for two hours on a 50:50 blend of conventional jet fuel and jatropha oil. This raised 

hopes that jatropha oil might help reduce greenhouse gas emissions from aircrafts (Jha, 2008). Combined 

these events proved effective in convincing governments and interested parties to support, invest, and 

research jatropha biodiesel production (Afiff, 2014). 
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Oil processing 

Jatropha oil can be used directly as a fuel for lamps and stoves, however for use as biodiesel it needs a 

modified engine or blending with fossil diesel fuel or transesterification to JME (Nielsen et al., 2013). 

Improved jatropha oil processing technologies were developed to optimise extraction rates (Nielsen et al., 

2013) and reduce free fatty acids (FFA) levels using a two-step pre-treatment process (Berchmans and 

Hirata, 2008), with H2SO4 acid catalyst (Tiwari et al., 2007). Alternative jatropha biodiesel transesterification 

processes included KNO3/Al2O3 solid catalyst (Vyas et al., 2009), and enzymatic (Tamalampudi et al., 2008), 

and ultrasonic processes (Deng et al., 2010). Research established optimum blending ratios (Sarghgin et al., 

2007), which were tested in direct injection diesel engines (Kumar et al., 2003; Agarwal and Agarwal, 2007) 

to ensure compliance with biodiesel standards (Sarin et al., 2007; Atabani et al., 2013). 

Value adding beyond biodiesel 

The jatropha production chain has two basic end products, jatropha oil and a press cake by-product. 

Additionally the potential for jatropha value addition and niche marketing was proposed to support its 

commercial value. Technologies are already available to extend the production chain and utilise a variety of 

intermediate and end products such as biogas, soap, edible oils and even electricity (Haider et al., 2015) so 

the potential for jatropha was there to extend beyond the biodiesel market. 

 

Jatropha seeds have been used as a purgative and the oil as a fish poison and pesticide. The seed husks can 

be used as cooking fuels, the branches, leaves and ashes to produce cooking salt and textile dyes and tannins. 

The leaves can be used as food garnish once steamed or stewed, while the bark is a source of wax. Jatropha 

can also be used to produce a soap that has very high anti-bacterial qualities. The seedcake is high in proteins 

but unable to be used as animal feed unless it is de-toxified. Finally all waste parts can also be used for 

biogas production (Karama, 2013). 

 

Proteins extracted from jatropha seed/press cake or leaves can be utilised for cattle or poultry feed, protein-

based adhesives, or protein-based emulsifiers. Lestari (2012) showed that jatropha press cake proteins 

performed highly as surfactants, e.g. emulsifiers and foaming agents, and as paper adhesives. Jatropha leaf 

protein is a potential source of amino acids for animal feed, or as an intermediate for building blocks 

functionalising N-containing chemicals. The valorisation of jatropha proteins could improve the total 

potential revenue per hectare of jatropha and increase the value of the seed. Further development of the value 

adding aspect of jatropha was seen as having the potential to attract farmers and investors. None of the 

mentioned options has made it into marketable products yet. 

 

Concluding on the market pull and technology push the term discursive commodities’ as proposed by Vel 

(2014a) comes to mind. The term is used for ‘no action, talk only’ commodities that bring benefits to 

proponents before or without actual trade in physical products. They have market value only as a result of the 

perception that science, technology, politics and business have created around them. These perceptions 
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include land availability, high yielding varieties and seed oil content; high value by-products derived from 

press cake; and the potential for carbon credits. In essence jatropha hype exists only within the science-

policy discourse; which could become a source of high profit in the future. 

 

So although there was strong vested interest in jatropha for different reasons supported by governments, 

universities, private companies, and NGOs, jatropha did not live up to expectations. The factors that 

promoted the hype in the first place were essentially the factors that contributed to the disappointment when 

they were evaluated. Government support in mandates, subsidies, incentives, and technology push factors 

such as oil processing and value adding effectively fuelled the belief that jatropha was a miracle crop and 

masked the reality that jatropha yields were not commercially viable, especially when cultivated on marginal 

lands. 

2.4 Disappointment: contributing factors 

The disappointment phase (Figure 2.1) was evident by a loss of confidence in jatropha over a relatively short 

period of time. Since 2010, the global consensus is that jatropha has been a failure (Kant and Wu, 2011; 

Nielsen et al., 2013). This disappointment has been documented for India (Ebrahim and Baker, 2012a; 

Kumar et al., 2012), China (Ebrahim and Baker, 2012b; Li et al., 2014b), Tanzania, the rest of East Africa 

(Kant and Wu, 2011; Ebrahim and Baker, 2012c), and the Southern Africa (Slingerland and Schut, 2014; 

Von Maltitz et al., 2014). 

 

Concerns over the value of jatropha as a miracle plant had already been raised in the 1990s with the failure 

of the Austrian-Nicaraguan project where jatropha genotypes 'Cape Verde' and 'Nicaragua' were planted in 

Nicaragua on a large scale. After three years and US$ 3 million the plantings were deemed a failure and 

abandoned, primarily due to a lack of productivity (Nogueira, 2004). Weyerhaeuser et al. (2007) also found 

that jatropha was not the miracle everyone had hoped for. In 2007 a detailed analysis of jatropha strengths 

and weaknesses was presented by Jongschaap et al. (2007) downscaling the proposed yield expectations, 

especially in marginal lands. Jongschaap was further involved in an EU FP7 funded project ‘Jatropha curcas 

Applied and Technological Research on Plant Traits (JATROPT)’ that emphasised the need to improve plant 

characteristics by germplasm collection, breeding, developing and using new breeding tools (JATROPT, 

n.d.). 

 

In essence there were six factors that contributed to the jatropha disappointment; policy and governance, 

economics, social, technology, logistical, and environment. 

2.4.1 Policy and governance 

Government policies and support for jatropha biodiesel were intended to reduce uncertainty and promote 

investment, by generating income for farmers, creating new jobs and improving the rural socioeconomic 

community. The situation of uncertainty did not lead to investigation of the claims related to the crops 
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performance. Neither was there at any moment the acknowledgement that jatropha was not a confirmed 

technology just to be implemented, but should rather be approached as a learning process (Slingerland and 

Schut, 2014). Government support for jatropha biodiesel was largely approached as managing supply and 

demand so getting the balance wrong seriously impacted on the financial viability of the industry and 

burdened taxpayers with the bill (Weyerhaeuser et al., 2007). 

 

While it might seem that governments and investors were very active in promoting jatropha, there was no 

long-term commitment, and no sanctions imposed for non-compliance to their promises. Under-developed 

biodiesel regulation and policies, late formulation of standards, and the absence of mandatory targets 

substantially contributed to the overall disappointment. In India and China, jatropha biodiesel targets were 

not mandatory and blending targets were introduced late (2011) while the renewable energy policy was 

implemented in 2005 (Li et al., 2014b). A similar mismatch in timing occurred in Mozambique (Slingerland 

and Schut, 2014). While slow or non-existence policies may have contributed to the disappointment 

(Wiggins et al., 2011; Li et al., 2014b), it was not always easy to align policies with ultimate outcomes. 

 

In Indonesia, policy overlaps created confusion between ministers with outcomes opposite to that intended. 

For example, the policy from the Ministry of Energy and Mineral Resource was to drive biofuel utilisation to 

reduce fossil fuel use. However the 2013 Ministry of Trade policy focussed on low cost vehicles to stimulate 

the domestic automotive industry leading to an increase in vehicle numbers with a higher consumption of 

fossil fuels (Putrasari et al., 2016). 

 

Wang (2008) concluded that the weak implementation of biodiesel subsidies was a problem. In India, 

jatropha biodiesel production was to receive subsidy and loan support (Government of India, 2003) and free 

seedlings (Axelsson et al., 2012), however many farmers were unable to participate. It was a similar situation 

in China where farmers seldom received their entitlements (Liu et al., 2012) with the majority of subsidy 

payments going to large enterprises. In Indonesia despite production policies and subsidies, and intense 

promotion of jatropha, it was only researchers, government officials, NGOs and broker companies, rather 

than farmers or plantation companies that were the major recipients (Vel et al., 2013). 

 

A major expectation of the jatropha subsidies was employment and income generation, yet the extent of their 

contribution to rural development in particular was not obvious, especially when compared with other 

poverty alleviation and employment creation projects (Rajagopal, 2008). In China for example this lack of 

long-term financial support undermined any continuation of jatropha production at the farm level (Li et al., 

2014b).  

 

On a global scale up to 2011 jatropha project investment was estimated at around US$ 270 million, invested 

in 97 projects worldwide; 41 % in Asian projects, 37 % in African projects; and 22 % in Latin America and 
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Caribbean projects (Wahl et al., 2013). It is clear that many of the contracts and investment policies and 

promises did not lead to actual investments. 

2.4.2 Economics 

Assessment of jatropha economic performance and feasibility highlighted the fact that profitability was 

marginal (Van Eijck et al., 2014a). This was due to poor yields, high production costs, low fossil fuel price 

(Van Eijck et al., 2014a), and a poor supply chain (Jupesta et al., 2011; Castro Gonzáles, 2015). This was 

further compounded by a lack of improved commercial varieties available to farmers (Weyerhaeuser et al., 

2007; Iiyama et al., 2013). 

 

Low yields were a common problem in all countries. In India, yields varied from 0.4 t ha-1 to 0.6 t ha-1 for 

rain-fed plantings to 2 t ha-1 to 2.6 t ha-1 for irrigated plantings. Yield differences for no fertiliser and 60 g N 

per tree application was 0.19 t ha-1 and 0.43 t ha-1 respectively (Gmünder et al., 2012). In China yields from 

jatropha planted on marginal lands were only around 0.29 t ha-1 (Weyerhaeuser et al., 2007) while overall 

annual production was about 1.5 t ha-1 (Wang et al., 2011). In Indonesia, jatropha yield varied from as little 

as 0.1 to 1 t ha-1 (for details see Chapter 4). 

 

Land and labour resources also impacted on opportunity costs causing biased profitability expectations (Van 

Eijck et al., 2014a). Jatropha production is maintenance intensive and labour requirements and costs were 

often underestimated, particularly when yields were low (Borman et al., 2013). This was irrespective of tree 

age (Gasparatos et al., 2012). Jatropha was reported to be resistant to pests, although the crop succumbed in 

many projects and required spraying (De Jongh and Nielsen, 2011; Van Eijck et al., 2014b), as well as 

weeding if good growth was to be expected (Everson et al., 2013). Transport costs for jatropha projects 

located in remote areas when combined with low yields from scattered farmers were often underestimated 

(Arndt et al., 2012). 

 

It was thought that the low profitability status of jatropha could only be justified if the CDM on the JME or 

jatropha oil price was included; however even this was doubtful. In India, Ariza-Montobbio and Lele (2010) 

determined that a minimum of 2.5 t ha-1 was required to make jatropha viable. They admitted however that 

their economic analysis did not include opportunity cost for land which would make the break-even point 

higher. Van Rooijen (2014b) investigated NGO funded jatropha projects on ‘marginal lands’ in Flores, 

Indonesia. The direct income from selling jatropha seeds was low, and without the anticipated income from 

carbon credits, farmers preferred to cultivate more productive crops. The conclusion reached was that the 

sustainability of such projects is questionable when their economic feasibility is dependent on the future 

financial value of a legally constructed commodity like carbon credits. 

 

Price competition between biodiesel and fossil diesel fuel was also a major factor, especially where 

governments subsidised imported fossil fuel. Between 2000 and 2008 the global price of crude oil 
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quadrupled only to decline suddenly, so it is easy to see why jatropha biodiesel struggled to be competitive 

(Wahl et al., 2013; Castro Gonzáles, 2015). In China, the price of fossil diesel fuel was subsidised by the 

state and remained relatively low compared with international diesel prices (GSI, 2008). India also 

subsidised fossil diesel fuel (Kumar et al., 2012). In China and India, fossil diesel fuel was about US$ 0.6 

(Wang et al., 2011) and US$ 0.4 (Kumar et al., 2012) less respectively than jatropha biodiesel. In 2008 

approximately 60 % of Indonesian fossil fuels were subsidised (Dillon et al., 2008). It was not until after the 

2008/10 disappointment that fuel subsidy reforms began to take place in countries such as China, India, and 

Indonesia; however this has done little to restore confidence in attractive prices for jatropha based biodiesel. 

 

In addition there was no defined market or market strategy in many countries for jatropha seed and oils 

(Axelsson et al., 2012). Jatropha was essentially driven by government objectives rather than any specific 

demand for biodiesel. In many cases even when farmers did have oral or written purchase agreements and 

were able to harvest, they often did not understand market structures, possibilities or complexities. This 

resulted in farmers being unable to sell their harvest and being left with a miracle crop that struggled to 

progress beyond the planting stage (Axelsson et al., 2012). 

2.4.3 Social 

Three social aspects of the jatropha disappointment are discussed in this section; land and food security, 

labour and employment, and rural development. 

Land and food security 

Land and food security issues became important factors in jatropha development. During the hype, jatropha 

which is inedible was considered the most suitable energy crop as it would not compromise food security 

when planted on wastelands or marginal lands (Weyerhaeuser et al., 2007; Wu et al., 2010). Often the 

allocation of wastelands were however made without considering or checking the purpose of these 

wastelands which had a long history as traditional suppliers of food, fodder, fuel wood, building materials 

and other locally important resources (Rajagopal, 2008). 

 

In several countries the promotion of jatropha was used by companies as an excuse to acquire or occupy 

(grab) large tracts of land (Cotula et. al. 2008). For example in Mozambique, governments were reported to 

facilitate land leases to large companies with the aim of reaping benefits from investments. These were often 

implemented without safeguarding or respecting the rights of smallholders or pastoralists not necessarily 

equipped to negotiate or defend their rights. 

 

Fuzzy land ownership patterns, conflicts between customary and legal rights combined with a lack of land 

tenure security all made it possible for governments to claim large tracts of such lands for jatropha (GRAIN, 

2008; Cotula et. al. 2008; Agoramoorthy et. al., 2009). In India there were no clear mandates available for 

the demarcation of non-cultivable wasteland feasible for jatropha plantations (Kumar et al., 2012). In China 
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(Wu et al., 2010) and Indonesia (Van Rooijen, 2014b) although lands allocated to jatropha were barren 

grasslands, these were often used by farmers for livestock grazing. Not all wastelands were suitable for 

jatropha. Rocky and waterlogged soils (Ebrahim and Baker, 2012a), land too steep or with high fire risks, or 

with topsoil less than 10 cm deep (Weyerhaeuser et al., 2007; Ebrahim and Baker, 2012b) were often 

included during land evaluation. In India for example, only 10 % of the original wasteland estimates were 

suitable for jatropha (Ebrahim and Baker, 2012a). 

 

Despite the assurances by the jatropha advocates, very real concerns about the impacts of jatropha on food 

security in the developing world began to emerge. FAO (2006) defines food security as existing when ‘all 

people, at all times, have access to sufficient, safe and nutritious food that meets their dietary needs and food 

preferences for an active and healthy life’. If land suitable for food crops is used to grow jatropha, then it 

impacts on food security (Green, 2009). For example, 82 % of the farmers in Tamil Nadu and Andhra 

Pradesh in India planted jatropha on land previously used for cultivating food crops (Ariza-Montobbio and 

Lele, 2010; Axelsson et al., 2012). Effectively jatropha was competing directly with and replacing 

groundnut, their food and cash crop and source of edible oil (Ariza-Montobbio and Lele, 2010). 

 

Increased yields and reduced production costs associated with fertile land serves as an economic incentive to 

plant jatropha on what should be land dedicated for food crops (Green, 2009). Land issues were often fuelled 

by economic incentives, promises of higher incomes, and pressure from the district authorities to substitute 

jatropha for food crops (Axelsson et al., 2012). Countries with abundant land but poor in other natural 

endowments found it difficult to ignore the new developmental opportunities jatropha offered (Cotula et al., 

2008). Again in Tamil Nadu for example, 50 % of villagers reported that the introduction of jatropha had 

reduced available cattle feed supplies (Ariza-Montobbio and Lele, 2010; Ariza-Montobbio et al., 2010). The 

allocation of land is a complex subject and has raised the issue that a complete ban on using arable, irrigated 

land for jatropha to avoid conflict between food requirement and fuel requirement is a real possibility 

(Kumar et al., 2012). 

Labour and employment 

Jatropha has often been promoted as crop for the poor (Brittaine and Lutaladio, 2010; Kuntashula et al., 

2014) able to provide income and reduce household expenses in remote rural areas which would ultimately 

reduce rural-urban migration (Muok and Källbäck, 2008). In reality these claims have relied on optimistic 

assumptions (Achten et al., 2008) of jatropha projects as new sources of rural employment and as a reliable 

cash crop (Francis et al., 2005). Jatropha was expected to offer farmers an added value when used to provide 

energy where there is no electricity. For example, some initiatives focused on producing and selling soap 

made from jatropha oil (Favretto et al., 2012). 

 

Labour requirements for jatropha production and harvesting are high as there are limited mechanisation 

opportunities available. While many processes can be delayed, crop maintenance is crucial for yield so 
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cannot be delayed (Van Eijck et al., 2014a). Lack of yield uniformity (Kant and Wu, 2011) leads to the need 

for multiple harvesting rounds increasing labour costs. It was always inevitable that labour shortages would 

occur and lead to conflicts with food crops, especially if labour availability competed with labour demand for 

subsistence agriculture (Gasparatos and Stromberg, 2012). 

 

While labour requirements of jatropha plantations contributed substantially to rural employment possibilities 

they came at a cost. For jatropha to be profitable it was important that a balance be established between 

profitability for a company and reducing poverty and improving rural livelihoods, a fact that would likely be 

determined by the minimum legal wage (German et al., 2010; Bormann, 2011). In Ghana jatropha had some 

success in creating employment; however the jobs were always short-term and seasonal (Acheampong and 

Campion, 2014). In Mozambique less than 2 % of the anticipated 150,000 jobs were created between 2008 

and 2011 (Slingerland and Schut, 2014). 

 

In India it was expected that jatropha would generate employment for the poor and under privileged groups, 

especially where the impact of forest degradation and loss of natural resources was high (Government of 

India, 2003). The Indian biofuel policy programme aimed to produce 20 % of total diesel demand from crops 

by 2017. To reach this target some 35 million acres of tribal wasteland would need to be cultivated with 

jatropha alone. These so called wastelands accommodate 25 % of India’s rural population who depend on 

them for subsistence living. The associated wilderness areas contain large numbers of endemic and 

endangered flora. Policy implementation would result in large numbers of people being displaced and 

biodiversity lost (Agoramoorthy et al., 2009). It is hard to imagine an effective balance able to combine 

employment opportunities with current subsistence occupation and biodiversity functions of these 

wastelands. 

Rural development 

The possibility for jatropha to bring positive benefits to rural farmers was promising and met with 

enthusiasm. These benefits included improved access to electricity, reduced health problems associated with 

using wood for cooking, and access to water through biodiesel water pumps (Practical Action Consulting, 

2009). Combine this with promises of schools, roads, and clinics for the people mobilised as labourers for 

large scale jatropha plantations in remote areas or in return for the use of farmers’ lands for jatropha 

plantations (Slingerland and Schut, 214), it is easy to see the attraction. The problem was that many 

communities were deceived by these promises (Acheampong and Campion, 2014). In Tamil Nadu - India for 

example local livelihoods were lost when crops failed, investments failed and companies did not honour their 

commitment to purchase the jatropha seed (Ariza-Montobbio and Lele, 2010; Ariza-Montobbio et al., 2010). 

In Indonesia, the promise of energy self-sufficiency, improved production efficiency and people’s welfare 

from small scale jatropha plantings did not eventuate (Afiff, 2014; Fatimah et al., 2015). 
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Smallholders were often depicted as victims of land ‘grab’ (Cotula et. al., 2008) and in many cases this is 

justified, however there were occasions where they benefited from the incentives offered for planted jatropha 

(Widjaja, 2014; Gunawan, 2014). In South Sulawesi, Indonesia, many farmers joined a jatropha scheme by 

submitting photocopies of their land certificates to intermediaries to obtain a share of the ‘incentives’ without 

any intention to grow jatropha. They did not feel any loyalty or moral obligation towards the projects that 

would also provide benefits to all involved (Widjaja, 2014). In Gunungkidul on Java, Indonesia, farmers also 

participated in jatropha projects to receive incentives, which they received before the real planting started. 

Some farmers did not even plant the seedlings whereas most planted trees were already uprooted after one 

year due to disappointing performance. Farmers maintained a few trees well in sight of visitors to give the 

impression that the project still existed and to keep the door open to any new government projects in the 

future. ‘The promotion of jatropha did not lead to its cultivation but confirmed farmers’ strategy of using 

government programmes for generating income in the form of incentives’ (Gunawan, 2014). While these 

comments may be true for some farmers the ultimate reality is the need to put food on the table or money in 

the pocket through actual cultivation of food and/or cash crops. 

2.4.4 Technology 

Technology during the jatropha hype concentrated on oil processing and value adding; however little work 

was done to maximise oil extraction rates and quality or to explore the potential for value adding which were 

aspects that were co-responsible for the disappointment. 

Oil processing 

The process of extracting jatropha oil from the seeds by crushing is well known; however there is always a 

trade off between the acceptable complexity, costs of technology and the required oil quality, especially 

when improper handling and inappropriate storage conditions are involved (Berchmans and Hirata, 2008). 

Despite the advances that have been made in jatropha oil research there were still concerns over oil quality, 

quantity, availability and economics, irrespective of whether it is a domestic, national or international market 

(Wickens, 2001). In India for example little attention was paid by research and development laboratories, oil 

sector companies or engine manufacturers for using jatropha biodiesel in existing diesel engines (Kumar et 

al., 2012). 

 

Technical issues for jatropha biodiesel refining include the use of acidic and alkaline catalysts which have 

the potential to cause environmental pollution (Min and Du, 2010), while the development of biocatalysts for 

large scale production was limited (Li et al., 2008). In China a major problem for farmers who did produce 

seed was a lack of biodiesel refining capacity due to financial concerns (Weyerhaeuser et al., 2007). For 

jatropha biodiesel to be competitive the economic scale of seed production and refining will need to be 

determined. Farmers who produce a few tons of jatropha seeds on scattered marginal land face challenges in 

finding downstream processors willing to purchase their seed. To overcome this some form of vertical 
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integration or cooperatives would be necessary. For some downstream processors buying small quantities of 

biodiesel or alternatively building small refineries did not make economic sense (Weyerhaeuser et al., 2007). 

Value adding beyond biodiesel 

While biodiesel is the primary objective for jatropha, technologies are available to extend the production 

chain and utilise a variety of intermediate and end products such as biogas, soap, edible oils, glycerol and 

even electricity (Haider et al., 2015). While there is a diverse range of products potentially available for 

niche marketing, little research has been initiated in this area and there are no established markets (Vel, 

2014a). Interest has been shown in the production of fertiliser or biogas from jatropha residues (Jongschaap 

et al., 2007), and in the fruit exocarp as a fuel for fast-cooking stoves (Grimsby and Borgenvik, 2013) and for 

the production of soap (Favretto et al., 2012). Jatropha has important traditional, non-monetary functions 

such as medicinal uses and as living fences and grave markers (Heller, 1996; Orwa et al., 2009). Kuntashula 

et al. (2014) raises an interesting point in that traditional use and commercial potential may not necessarily 

be compatible. Value adding that increases the commercial attractiveness of jatropha needs to be weighed 

against the environmental impact. Palm oil is a classic example of an introduced species that has major 

negative impacts on the environment. While jatropha oil and associated by-products can be directed toward 

various applications, it will take serious research and innovation before farmers will benefit (Hunsberger and 

Alonso-Fradejas, 2016).  

2.4.5 Logistics 

There are two aspects relevant to the jatropha disappointment that will be discussed in this section; supply 

chain and infrastructure. 

Supply chain 

The lack of a defined supply chain structure that addressed the processes from the field to the consumer was 

a contributing factor to the jatropha disappointment (Trienekens et al., 2003; Bijman et al., 2009). A supply 

chain needs to integrate suppliers, manufacturers, distributors, and retailers who work together to acquire raw 

materials, convert these raw materials into specified final products, and deliver the final products to retailers 

(Beamon, 1998). In basic terms the jatropha biodiesel supply chain would compromise seed production and 

harvest through to oil production and distribution through to the end user (Goswami and Hazarika, 2016). 

 

In India the supply chain was a major constraint as problems were experienced with insufficient seed 

production, poor seed processing and no established markets (Goswami and Hazarika, 2016). In China 

insufficient quantity and quality of non-agricultural and non-forest land, facilitation between smallholder 

farmers upstream and the oil and biodiesel processing industries, economics of growing and processing 

jatropha, government investment and the lack of research strategies were all seen as limiting factors 

(Weyerhaeuser et al., 2007). In Indonesia, conflicts of interest between the broader national agenda and 

specific personal gain contributed to the jatropha demise (Afiff, 2014) through poor prices, unfair contract 

farming agreements and the lack of genuine buy-back mechanisms. This was further compounded by 
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governments who refused to acknowledge the factors driving the jatropha hype and their implications 

(Pradhan and Ruysenaar, 2014), effectively ignoring the fact that jatropha was a new crop and there was a 

need for a supply chain and associated infrastructure development. 

Infrastructure 

A lack of infrastructure support contributed to the jatropha disappointment as it seriously impacted on 

financial viability. Infrastructure for jatropha biodiesel involves the seed producer to the refinery, distributor, 

and market. It includes such aspects as irrigation, transportation, communication, storage systems, waste 

systems, machinery or refinery systems, and extension services. 

 

In India for example difficult terrain and remote locations, and poor infrastructure increased seed delivery 

cost. The establishment of small, local processing plants were needed to reduce transportation and storage 

costs, yet finding investors to build these was a problem (Goswami and Hazarika, 2016). If constructed these 

small refineries still faced difficulties with securing reliable seed supplies. In China some state-owned energy 

companies delayed construction of refineries (Liu et al., 2010) due to financial concerns (Weyerhaeuser et 

al., 2007). In Indonesia jatropha development also suffered from inadequate infrastructure which discouraged 

investors and made it difficult for jatropha biodiesel production to meet the goals set by local governments 

for the benefits of their local communities (Amir et al., 2008). 

2.4.6 Environment 

The environmental impact of jatropha was an important factor in the jatropha hype disappointment. Jatropha 

environmental performance was evaluated and reviewed during its life cycle using the LCA approach (Van 

Eijck et al., 2014a; Jingura and Kamusoko, 2016). The objective was to identify the environmental impact of 

jatropha production and provide future direction for improvement (Achten et al., 2010b). 

 

In Section 2.3.1.1 the examples of JME LCA on energy and GHG balance show reductions in non-renewable 

energy requirement or consumption and GHG emissions compared to fossil diesel fuel. While the LCA 

procedures are standardised (ISO 14044:2006), the results were influenced by former land use, planting 

density, cultivation intensity, processing efficiency, and final products and by-products allocation (Achten et 

al., 2010b; Van Eijck et al., 2014a). Prueksakorn and Gheewala (2008) calculated jatropha energy 

distributions at 60 % for cultivation and 40 % for oil processing. Ndong et al. (2009) and Achten et al. 

(2010b) however determined the energy distribution at 12 % for cultivation and 88 % for fuel processing. 

The differences between Prueksakorn and Gheewala (2008), Ndong et al. (2009), and Achten et al. (2010b) 

highlights the difficulties associated with calculating energy distribution and the need for more research. 

 

Cultivation and fertiliser use were the primary contributors to GHG emissions, calculated at 52 % by Ndong 

et al. (2009) and 84 % by Achten et al. (2010b). N2O emission from fertiliser is the major contributor 

(Reinhardt et al., 2007; Achten et al., 2010b; Van Noordwijk et al., 2016), with a greenhouse effect per 
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molecule that is 320 times that of CO2 (Zah et al., 2007). In the biodiesel production stage, transesterification 

accounts for 11 % (Achten et al., 2010b) and 17 % (Ndong et al., 2009) of total emissions. Land use change, 

where forest or woodland areas for example are converted to jatropha, can substantially increase GHG 

emissions (Bailis and McCarthy, 2011; Romijn, 2011) as can be seen from the biofuel carbon debts as 

identified by Fargione et al. (2008). 

 

Despite the potential for jatropha to reduce fossil energy consumption and GHG emissions it is important to 

acknowledge the environmental effects of acidification and eutrophication and to understand that trade-offs 

likely take place (Reinhardt et al., 2007; Achten et al., 2010b; Gmünder et al., 2010). Ultimately the 

objective should be to minimise the environmental effects whilst maximising commercial potential. 

2.5 Reality check 

Reality checks are an essential part of any post hype and disappointment analysis. Potentially there are two 

basic outcomes. The first is a renewed commercial interest, while the second is reversion to traditional and 

local use that existed prior to the hype. Renewed commercial interest is only possible if there remain 

interested parties who continue to work to resolve the commercial deficiencies in jatropha. The primary 

objective will be to develop jatropha from a wild crop into commercial varieties able to produce high yields 

under controlled management. 

 

It is clear that after the disappointment of the 1945-1950 and 1980-1990 hypes that interest in jatropha 

reverted back to the local/traditional level (Figure 2.1). Over time it seems that the disappointment aspect of 

the jatropha hype was forgotten and the cycle repeated itself. Contributing to this may be that the scientific 

literature generated during the hype phase is not matched by an equivalent documentation of the subsequent 

disappointment - something that this chapter tries to do. 

 

While some diehard enthusiasts continue with jatropha, and may even experience some benefits, they are a 

minority. These hype and disappointment cycles should perhaps not be viewed as failures; rather they should 

be seen as a normal part of any new crop development. 

 

There are however costs to society that need to be addressed, especially for the future development of other 

new crops. Lost investments, abandoned plantations that result in unclear future land use, landownership and 

unemployment, abandoned infrastructure of oil extraction and bio refinery and waste of taxpayers’ money 

spent on subsidies that did not generate any public goods such as the expected decrease in GHG emissions to 

mitigate climate change are some of the associated costs. As our understanding of jatropha and the necessary 

technology grows, performance potential increases. 
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While it might appear that that once again jatropha has reverted back to the traditional and local use level 

there may still be a positive future for jatropha. Whether jatropha will maintain the status quo or once again 

enter into Gartner’s plateau of productivity, only time will tell. 

2.6 Conclusions and lessons learnt 

It is obvious that jatropha has some potential as a biofuel crop as is evident by the fact that it has been 

through multiple hype cycles. It is unfortunate that these hype cycles have been followed by disappointment. 

The disappointment observed during the first hype could simply be attributed to a very specific need that was 

no longer required. The second and subsequent cycles share many similarities and resemble other miracle 

new crops, such as Argania spinosa and Moringa oleifera (Achten et al., 2014). 

 

At the national level the interest in jatropha was driven by societal and economic concerns of limited oil 

reserves and the expectation that extraction costs would continue to impact on the global price of crude oil. 

In addition jatropha would provide income and improved socio-economic conditions for rural areas 

(Brittaine and Lutaladio, 2010; Kuntashula et al., 2014). Jatropha was said to represent a source of clean, 

renewable energy with advantages at all levels from national to individual households (Achten et al., 2008). 

Jatropha would not impact on food security and the food versus fuel arguments due to its toxicity and its 

ability to produce on marginal lands (Van Rooijen, 2014a, b). Jatropha ia also claimed to have a place in 

controlling erosion (Reubens et al., 2011), enriching soils, promoting water infiltration and reducing flooding 

(Orwa et al., 2009; Brittaine and Lutaladio, 2010; Valdés Rodríguez et al., 2014; Van Rooijen, 2014b), 

storing carbon (McGrath, 2014) and in earning carbon credits (Van Rooijen, 2014b). 

 

It is clear that many involved in the jatropha hype were able to relate to the individual claims or were easily 

swayed by the propaganda. While there may be some validity to certain individual claims, this does not 

explain the circumstances that led to the hype, especially given that trade-offs might be considered. There is 

no dispute that biodiesel produced from jatropha has the capacity to replace fossil diesel, but what are the 

costs both financially and environmentally, and will it really lead to lower GHG emissions when cultivation 

practices and direct or indirect land use change are taken into account? In the absence of improved varieties 

it is unlikely that jatropha will ever produce high yields in marginal locations. Jatropha is no different to any 

other crop as it needs water and nutrients to grow, develop and produce fruits. Thus despite its toxicity 

jatropha does compete with food crops. 

 

At the local level farmers already grew jatropha as a fence to protect food crops from animals and as an 

energy source for improved food processing and storage (Achten et al., 2010c; Brittaine and Lutaladio, 

2010). Their aim now was to produce jatropha seed for sale and ultimate conversion from jatropha oil to 

biodiesel. At a household level, jatropha pruned branches and seed hull biomass have long been used as fuel-

wood or charcoal for cooking and the oil used for lamps (Heller, 1996; Achten et al., 2010c; Brittaine and 

Lutaladio, 2010). The expectation now was that production of jatropha seed for biodiesel use would be 



Jatropha hype and disappointment - lessons learnt 

37 

instrumental in reducing rural-urban migration (Muok and Källbäck, 2008) and improving socio-economic 

conditions. Unfortunately many of the claims made about jatropha were based on optimistic assumptions, 

especially regarding yield (Achten et al., 2008). Farmers were misled into believing that jatropha was a 

reliable and viable cash crop (Francis et al., 2005) and that there was potential for value adding. 

 

Government propaganda, academia and university research and its funders, private companies, and NGOs 

were all instrumental in fuelling the jatropha hype. It seems that early warnings by certain scientists 

(Jongschaap, 2007) to policy makers, companies and NGO’s were largely ignored, buried or overtaken by 

the wave of hype. This shows the complex two-way relationship between evidence and policy that is linked 

to how research is funded and how its results are used. Biofuel policy with jatropha as an important 

component was promoted by many governments and a process of policy based evidence making rather than 

evidence based policy making took place. Research was commissioned and pieces of evidence were 

selectively picked in order to support or justify the policy which had already been decided upon. In a 

situation of evidence based policy making the policy would have only been formulated after the 

establishment of objective evidence through rigorous scientific methods. 

 

From our review it is clear that jatropha was introduced without a comprehensive understanding of crop 

development and performance and market supply and demand. Market pull factors of society, economy, 

environment and government mandates, subsidies, land allocation, and investors as well as the technology 

push factors of oil processing and value adding were not sufficiently well prepared or developed and 

implemented to foster commercial development. 

 

There was no long-term commitment and legal framework to protect industry participants. Jatropha yields 

were low and unreliable and there were few improved populations available. Low yields were compounded 

by high production costs and price disparities with subsided fossil diesel fuel. Jatropha was allocated to 

marginal or degraded land without first considering common-property resources and the loss by locals of 

access to food, fodder, and fuel wood on those lands caused conflicts and food insecurity. Labour demand 

for jatropha is high and seasonal and when the fact that it coincides with labour demand for food crops is 

factored in the situation becomes complicated. Inefficient and ineffective supply chain structure from field to 

consumer was another defining factor in the jatropha disappointment. Infrastructures such as refinery, 

irrigation, transportation promised by government or investor did not materialise. 

 

Technology issues relating to oil quality such as viscosity, oxidation during storage, extraction efficiency, or 

value adding of seed cake detoxification for cattle or poultry feed are still at the laboratory stage of 

development. It was soon realised that contrary to popular belief jatropha biodiesel production could cause 

negative environmental impacts depending on the land use change and on cultivation management and that 

trade-offs would need to be considered and factored into any commercial development. 
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The lessons learnt from the jatropha experience provide valuable insight into the future of jatropha and any 

similar ‘silver bullet’ crops that may emerge in future discussions. The difficult part is to know where to start 

as one of the aspects associated with hype seems to be the irrationality of all involved. I argue that while 

irrationality might be a factor it as much wishful thinking for public goods on the part of some and 

opportunistic behaviour for personal gain on the part of others. It is inevitable that no matter how much 

caution is advised there will always be some who will ignore the signs and are willing to face the risks in an 

effort to capitalise on the rewards associated with early entry. From work in the JARAK programme it is 

clear that some took advantage of the circumstances that accompanied the hype (Vel et. al., 2013, 2014a,b; 

Afiff, 2014; Simandjuntak, 2014; Widjaja, 2014; Gunawan, 2014; Van Rooijen, 2014). Vel et. al. (2013) 

speaks of the interests of a network of powerful policy entrepreneurs that influenced the policy process 

supporting investments in jatropha, allowing actors to gain mutual benefits within their networks. Companies 

and NGO’s were able to access subsidies or bank loans and investment funds to develop large or smallholder 

jatropha plantations while brokers successfully managed to get a piece of the subsidy cake (Vel, 2014a). 

Researchers were not left out, able to access numerous research funds (Vel et. al., 2013). Smallholders were 

mostly depicted as victims of land ‘grab’ (Cotula et. al., 2008) but for some the opportunity to participate in 

the subsidies on offer was too tempting (Widjaja, 2014; Gunawan, 2014).  

 

For jatropha to ever be successful there must first be well performing, high yielding varieties available. Next 

to this there must be secure financial and technical support and market access designed to foster energy 

development and improved socioeconomic conditions. Only then will there be the confidence necessary to 

adopt new crops and crop management systems. Our examples have highlighted the different and sometimes 

converging interests in the development of jatropha as a new crop. This is despite evidence showing 

jatropha’s poor performance, and the differences in the policies, laws and regulations between countries and 

the extent to which they are able and willing to enforce the compliance. 

 

At this stage with the uncertainty that surrounds jatropha yields and social benefits, jatropha will remain a 

minor player in tropical landscapes for a variety of uses, but for the reasons elaborated above it should not be 

promoted as a smallholder or plantation crop. Only when all concerns have been satisfied will we see 

improved jatropha socioeconomic conditions and an environment conducive to a successful jatropha 

biodiesel industry. 

 

In Chapters 3 to 6, I address the biophysical factors of the jatropha hype and disappointment by advancing 

our understanding of jatropha plant characteristics, systems productivity, and management practices. 

 



 

 

Chapter 3 Tree or shrub: a functional branch analysis of Jatropha curcas L. 
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Abstract  

Jatropha is an oil-bearing semi-evergreen shrub or small tree with potential as a source of sustainable biofuel, 

yet information regarding vegetative and fruit biomass in relation to plant architecture is lacking. Research 

conducted in Indonesia used the tree based Functional Branch Analysis (FBA) model as a non-destructive 

method to estimate above and belowground biomass, and plant architecture. The FBA utility for shrubs was 

unknown and required modification. This research used destructive measurements to validate modifications 

to the FBA model that included sub-categorisation of the tapering coefficient for twig, branch, and wood 

diameter classes, and addition of a fruit load parameter in the distal link. The modified FBA model 

confirmed jatropha to be a shrub rather than a tree, producing variable estimates for aboveground biomass. 

This variation was due to morphological plasticity in the length-diameter relationship of the branches that 

diverged from fractal branching architecture. Fruit biomass variation between replicates was not well 

estimated and total proximal root diameter was a poor predictor of total root biomass, due to the proximal 

roots having enlarged water storage structures that do not follow fractal branching assumptions. Jatropha 

fruit was shown to predominate on twigs with a diameter between 0.9 cm and 1.4 cm. Understanding the 

correlation between fruit development and plant architecture will be necessary for fine-tuning the FBA 

model for future commercial breeding and selection. The high degree of morphological plasticity displayed 

by jatropha requires consideration when determining plant biomass. 

 

Keywords: Aboveground biomass - Allometry - Belowground biomass - Functional branching architecture - 

Proximal root - Stem diameter 
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3.1 Introduction 

Jatropha is a semi-evergreen shrub or small tree with oil-rich seeds, belonging to the Euphorbiaceae 

(Divakara et al., 2010). In Indonesia, there is disagreement over whether jatropha is a tree or a crop. 

Foresters consider jatropha a crop or a plantation crop at best, while agronomists consider it a tree. The 

disagreement occurs because jatropha has a range of phenotypes; shrub-like, multi-stemmed growth habits 

with height < 5 m, and tree-like, single-stemmed growth habits with height > 5 m (Sunil et al., 2013). This 

problem is not restricted to jatropha as Scheffer et al. (2014) found that 9.2 % of the tree species assessed 

were classified as shrubs in the TRY (plant traits) database. 

 

Jatropha is of interest for sustainable biofuel production, for socio-economic improvement, and for wasteland 

reclamation in tropical semiarid regions (Achten et al., 2010d; Divakara et al., 2010). Jatropha has been 

claimed to grow in marginal areas, without competing with food production and is viewed with hopes of 

providing carbon credits (Divakara et al., 2010; Wani et al., 2012). Many of the envisaged benefits have not 

materialised. Yields of 12 t ha-1 for example have been claimed and global predictions showed yields of only 

5 t ha-1 (Achten et al., 2014). The problem is that expectations were not based on field performance and 

validated scientific knowledge (Edrisi et al., 2015). Although uncertainties remain, knowledge gaps are being 

filled as is evident by the fact that actual measured yields vary from < 0.5 t ha-1 to 2 t ha-1 (Edrisi et al., 2015). 

However an understanding of jatropha growth and reproductive biology in combination with breeding for 

available commercial high yielding planting material, optimum management practices, and suitable growing 

environment are still lacking (Achten et al., 2014; Edrisi et al., 2015). 

 

To capitalise on the commercial potential of jatropha, basic understanding of plant structure, function, and 

biomass allocation is required. Biomass and fruit production follow from quantitative relationships between 

plant size and growth (Niklas, 1993). Empirical approaches include relationships between dimensional 

variables such as tree height and stem diameter, leaf area, weight and volume (Lacointe, 2000). Allometric 

equations can be generated from destructive measurements of tree component biomass as dependent 

variables with easily measured independent variable such as stem diameter at breast height (MacFarlane et 

al., 2014). 

 

Plant-based models (PBM) (Vos et al., 2010), functional structural plant models (FSPM) (De Reffye et al., 

2009), and functional branch analysis (FBA) or fractal branching models (Van Noordwijk and Mulia, 2002) 

have been used to quantify growth and biomass. PBMs view plant growth as a function of factors such as 

light, temperature, nutrients, water and ambient CO2 and their impact on leaves, stems and roots (Vos et al., 

2010). PBMs use defined rules to simulate the physiological process and growth partitions to determine 

biomass. A limiting factor for PBMs is a lack of feedback between plant growth and plant architecture 

operating at the phytomer level such as seen in FSPM. In FSPM a phytomer or growing unit (GU) is defined 

as having one internode, one or more leaves, one or more axillary buds and possibly flowers that form an 
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axis or shoot (De Reffye et al., 2009). FSPM is a virtual plant model based on plant architectural models of 

Hallé et al. (1978), mathematic models and the Lindenmayer L-System (Prusinkiewicz, 2004). FSPM views 

the plant as a set of phytomers with plant architecture used to integrate environmental responses with 

feedback between biomass production and biomass partitioning for both development and growth (Vos et al., 

2010). 

 

The FBA model (Van Noordwijk and Mulia, 2002) is a compromise between the PBM and FSPM 

approaches and uses the ‘pipe-stem model’ theory of fractal geometry of simple tree branching architecture. 

The pipe model hypothesis is that the cross-sectional area (sum of squared diameters) of branches is equal to 

that of the preceding stem or branch. FBA models produce equation coefficients that relate aboveground tree 

biomass to the stem diameter at breast height (DBH) or root biomass to proximal root diameter (Van 

Noordwijk et al., 1994). This eliminates, or at least reduces, the need for destructive sampling to determine 

biomass. The FBA concept has been used to estimate shoot biomass, root length, and root biomass (Smith, 

2001; Salas et al., 2004), to estimate tree component biomass using standing tree measurements (Santos 

Martin et al., 2010), and to derive species-specific and mixed-species biomass equations (MacFarlane et al., 

2014). The model does not predict growth, but provides architectural boundary conditions for transport and 

support tissues to keep up with leaf and fine root development (Mulia et al., 2010). 

 

Jatropha allometric research historically used empirical models and destructive sampling to determine 

aboveground biomass (Ghezehei et al., 2009; Achten et al., 2010d; Makungwa et al., 2013), with limited 

belowground data (Firdaus and Husni, 2012; Baumert and Khamzina, 2015). However, there are no data 

available for biomass partitioning in the generative stage (harvest index). The relationship between 

inflorescence size, sex ratio, fruit maturation (yield) (Negussie et al., 2014), and plant architecture is 

important. For instance, in apple and pear trees the reproductive and vegetative branches are different 

(Costes et al., 2006); while for coffee trees the branches bearing flowers and fruit grow horizontally from the 

stem (Van der Vossen and Herbert, 1985; Cilas et al., 2006). In coffee shorter internode length, without a 

reduction in the numbers of fruit per cluster is also a selection criteria for higher yielding cultivars (Gichimu 

and Omondi, 2010). 

 

FBA has been used to estimate tree biomass but has not been adjusted for shrub architecture. Extension of 

the plant architectural model to derive potential fruit production has not yet been tested. We therefore set out 

to test this possibility. The aim of our study was to develop allometric equations for above and belowground 

jatropha biomass, as grown in Indonesia, using FBA. Four objectives were: 1) to gain an understanding of 

the complexity and relationship between jatropha biomass and FBA; 2) to develop improved allometric 

equations for FBA model in determining above and belowground biomass; 3) to evaluate the FBA model as 

a non-destructive method for estimating biomass; and 4) to explore whether FBA can be used to identify 

management practices that increase yield. 
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3.2 Materials and methods 

This study was conducted at a jatropha plantation in Mulo Village in the Wonosari District, Gunungkidul 

Regency of Special Province Yogyakarta in Indonesia (8o 0’ N, 110o 34’ E, 185 m above sea level - ASL). A 

local company, PT. JGE purchased the land and planted jatropha. No agricultural inputs were applied to the 

monoculture system and local farmers harvested grass on daily basis for cattle feed, while weeding was 

performed once a month. Planting material was seed propagated from IP-1M, an improved jatropha 

population of a first selection from Muktiharjo, Central Java (Hasnam and Hartati, 2006). Planting density 

was 2,500 plants ha-1, spaced 2 m × 2 m from seedlings transplanted at three months. 

 

The region has an equatorial rainforest climate with mean annual rainfall of 1,800 mm, mostly occurring 

from November to April and months with less than 100 mm per month, mostly in May and October. Mean 

annual temperature and relative humidity under standard weather station conditions are about 26 0C and 70 

% respectively. The soils are Mollisols with texture varying from clay, silty clay to silty clay loam, with poor 

drainage. Drainage canals were located around the study site to minimise water logging. The soils are 

shallow, 10 cm to 50 cm with limestone beneath. Top soil (0 - 10 cm) pH (1: 5) was 7.7 with ~0.9 % organic 

carbon (Walkley-Black method) and total nitrogen (Kjeldahl method), phosphorus (Olsen method), and 

potassium (ammonium acetate pH 7) were 0.5 mg kg-1, 13.8 mg kg-1 and 0.2 cmol (+) kg-1 respectively. 

3.2.1 Tree selection 

This study used jatropha four-year-old from monoculture plantings. I selected ten unpruned jatropha in good 

health, with a single-main stem, and with minimum of 100 branching points (links). Because of the selection 

criteria, only four trees with fruit were available which affected fruit biomass estimation. Leaf biomass 

estimation was not affected as the study was performed before leaf fall commenced. At the site, flowering 

started at the end of October after a light-rain shower and continued until mid-June. Fruit harvesting started 

in mid to late January and continued through to mid-August. Leaf flush started at the end of October after the 

start of rainy season and reached its peak in mid-March, while leaf fall started at the end of June and 

continued to October. For the selected trees, destructive sampling followed the FBA measurement protocol. 

3.2.2 FBA measurements 

FBA aboveground field measurements started in mid April 2012 and finished at the end of May 2012. FBA 

belowground field measurements followed and were completed in August 2012. FBA details for field 

measurements are described in the Appendix 1. Biomass calculation using the FBA protocol and workbook 

are available at http://www.worldagroforestry.org/output/fba-fractal-branch-analysis-model. 

3.2.2.1 Destructive measurements 

Aboveground destructive measurements were performed after the FBA aboveground measurements were 

completed. Each jatropha was harvested to the base of the stem or until the top of root collar was reached. 

The aboveground biomass was separated into leaves, fruit, twig, branch, and wood or stem categories. 
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Belowground destructive measurements were performed after roots were excavated and the FBA 

belowground measurements were completed. Roots were harvested and separated into stump plus tap root, 

fine roots, proximal roots for twig, branch, and wood categories. All the above and belowground biomass 

separated categories were subject to fresh and dry weight measurements. 

3.2.2.2 Fresh and dry weight measurements 

Fresh weights for each aboveground link category, including leaves and fruit were determined. Dry weights 

were determined for subsamples to generate a dry weight coefficient. All belowground roots for each of the 

links categories were weighed. No root washing was required as the soil was friable and only needed gentle 

rubbing with fingers or picking with forceps. Correction factors were necessary for fresh weight of fine roots 

and roots with twig category for moisture loss during schematic root drawings and measurements due to the 

time required from drawing to completing fresh weight measurement. The correction factor was determined 

from other jatropha roots of similar category measured without any delay after harvesting. Dry weight 

coefficient for above and belowground subsamples was obtained by drying the samples at 70 °C until a 

constant weight was achieved. 

3.2.2.3 Density measurements 

Density measurements for each link category were determined by measuring volume, and wet and dry 

weights. Volume was measured using single frustum equation (Valdés-Rodríguez et al., 2013). Wet field 

weights were determined for subsamples of all categories. Dry weights were determined by drying 

subsamples at 70 °C to a constant weight and applied to the remaining woody parts (Santos Martin et al., 

2010). 

3.2.2.4 Leaf and fine root measurements 

Average leaf area was determined by sampling 100 leaves from each tree. Leaf area was estimated using 

allometric equation generated by Pompelli et al. (2012). Specific Leaf Area (SLA) was determined as leaf 

area per unit dry weight (cm2 g-1). Leaf dry weight was determined after drying at 70 °C for 24 h. To 

determine belowground structure required a full root assessment. Fine roots or feeder roots were determined 

as having a diameter < 0.1 cm. Specific root length was total root length per dry weight (cm g-1) and 

determined after drying at 70 °C for 24 h. Average root length was total root length divided by the number of 

roots. 

3.2.2.5 Tap root biomass estimation 

Belowground biomass estimated from FBA does not include biomass of taproot and roots that grew out from 

the taproot. An empirical biomass equation to fit regression model estimated taproot biomass (Equation 3.1): 

 
                          Equation 3.1 

 
where B is total biomass and D is root diameter while (a) and (b) are constants. The taproot biomass and 

diameter data were log-transformed prior to regression analysis using least trimmed squares (LTS) to 
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account for heteroscedascity and potential outliers in the data. Predicted outputs were back-transformed and 

verified with a correction factor. Statistical analysis used SAS 9.3 (SAS Institute Inc., Cary, NC, USA). 

3.2.3 FBA validation 

Validation of predicted FBA biomass from destructive sampling was determined in 1:1 relationship. Because 

FBA does not use standard fitting techniques, statistical parameters for Maximum Error (ME), Root Mean 

Square Error (RMSE), Coefficient of Determination (CD), Modelling Efficiency (EF), and Coefficient of 

Residual Mass (CRM) are used (Appendix 2). 

3.3 Results 

3.3.1 Tree parameters 

Tree parameters for aboveground biomass determination were generated from 1,754 links and belowground 

biomass derived from 3,182 links from 10 trees. Table 3.1 shows tree parameters for above and belowground 

with similar and contrasting values. Aboveground branching is an almost perfect bifurcation (2.01) with p 

and q values closest to the pipe model theory, p = 1.01 and q = 0.66. The first branching order from the stem 

shows a sympodial pattern but the next order of branching tends not to be situated opposite each other or 

following symmetrical dichotomous ramification, although it still has a bifurcation of nearly 2. Sometimes 

branches alternate in a herringbone pattern with unequal distances between links, or situated only at one side 

in an unequal herringbone pattern (Appendix 3). 

 

Average numbers of proximal roots for each tree varied from 7 to 12 with an average diameter of 2.41 cm. 

This means that proximal roots had double the number of the initial roots. Initially jatropha seedlings 

propagated from seed show one taproot and four proximal roots that have perpendicular orientation. Over 

time the initial root structure changes and a more branching structure develops. Mature jatropha also develop 

4 to 8 additional lateral roots that sometimes have oblique roots or lateral roots (sinker roots) that grow 

vertically similar to the taproot (Reubens et al., 2011). 

 

Compared to aboveground parts, roots had more branches, 2.17 branches at each node and less conservation 

of cross-sectional area across a branching point (p = 1.71, q = 0.76; see Appendix 4). Distribution of p for 

belowground values were 61 % skewed toward p > 1.25 that were 38 % from the root diameter category 

corresponding to aboveground branches, 23 % from the ‘twig’ root category, and 9 % from the ‘woody stem’ 

root category. A high p value indicates that the link cross-sectional area before branching was greater than 

the sum of the cross-sectional area of links after branching. When added to the fact that one branch had a 

greater cross sectional area (dominant branch) in comparison with the others (q value 0.76), this indicates a 

herringbone root branching pattern (Van Noordwijk et al., 1994). The herringbone pattern for jatropha root 

had one main axis (mother branch) that started at the base proximal root and branched to form smaller, 

daughter branches with fine roots at only one side, and continued for various lengths before branching into 

almost two equal size sub branches (dichotomous). The daughter branches maintained a similar iteration as 



Chapter 3 

46 

the mother branch. According to Van Noordwijk and Purnomosidhi (2012) the distribution of q values in a 

herringbone pattern shows a gradual decrease in value from 1 to 0.5, similar to the pattern shown in 

Appendix 4. 

 

Table 3.1 Average (SD) jatropha main branching parameters for FBA model. 

Parameters 
Aboveground Belowground 

Average SD Average SD 

Diameter of proximal stem (cm) 10.22 2.21 n.a n.a 

Diameter of middle stem (cm) 9.36 2.23 n.a n.a 

Diameter of distal stem (cm) 9.03 2.03 n.a n.a 

Diameter at 2 cm aboveground (cm) 10.10 2.23 n.a n.a 

Number of proximal roots of each tree n.a n.a 9.5 2.54 

Diameter of proximal roots (cm) n.a n.a 2.41 1.17 

Number of branches 2.01 0.14 2.17 0.59 

p (change in cross sectional area) 1.01 0.61 1.71 1.2 

q (relative allocation to largest offspring) 0.66 0.11 0.76 0.15 

Twig ( D aboveground ≤ 1.99 cm; D belowground < 0.5 

cm) length (cm) 16.00 14.10 16.21 17.66 

Branch (D aboveground = 2 to 6.99 cm; D belowground = 

0.5 to 1.99 cm ) length (cm) 21.98 21.71 20.93 24.08 

Wood (D aboveground ≥ 7cm; D belowground ≥ 2 cm) 

length (cm) 
11.64 10.59 10.93 11.85 

Taper of twig link (cm cm-1) 0.05 0.06 0.011 0.0006 

Taper of branch link (cm cm-1) 0.03 0.1 0.023 0.029 

Taper of wood link (cm cm-1) 0.10 0.25 0.085 0.14 

Twig density (g cm-3) 0.30 0.04 0.48 0.22 

Branch density (g cm-3) 0.32 0.13 0.36 0.23 

Wood density (g cm-3) 0.34 0.02 0.26 0.12 

Note: SD = standard deviation, n.a = not applicable, D = diameter 

 

To apply fractal branching model, mean p and q for above and belowground parameters should have 

independency with the parent diameter as fractal is scale-independent (Van Noordwijk and Mulia, 2002). 

Regression analysis shows R2 for each parameter is relatively independent and fractal branching model is 

applicable for jatropha. 

 

The average link length for twig, branch, and wood categories for above and belowground had similar 

average and standard deviations (Table 3.1). Average length of twig was 16 cm (SD = 14 cm to 17 cm), 
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branch was 21 cm to 22 cm (SD = 21 cm to 24 cm) and wood was 11 to 12 cm (SD = 11 cm to 12 cm). It 

seemed for above and belowground link category, increased diameter from twig to branch was followed by 

increase of length of twig and branch, with the exception of wood category. 

 

Analyses of length and diameter relationship for twig and branch however showed that the relationship was 

not linear (Appendix 5). For this reason, parameterisation of FBA did not use an average value for link 

length for all categories, but used an average link length for each category. Aboveground final/distal twig 

links had leaves or leaves and fruit, which means that not all twigs bear fruit. Fruit-bearing twigs were 0.9 

cm to 1.4 cm in diameter (Figure 3.1) with lengths varying from 4 cm to 65 cm. 

 

 
Figure 3.1 Relationship between length of fruit-bearing twig with diameter and total fruit biomass; vertical 

lines in-between fruit biomass show upper and lower limits for diameter boundary determination used for the 

FBA model; the sloping line relating the length of fruit-bearing twig to diameter indicates a proportionality 

factor. 

 

Observations, schematic drawings and data from this study and other pruning and no pruning studies in 

monoculture, intercropping and hedge systems in Chapter 4 showed that approximately 90 % of fruit 

produced grew on twigs with a vertical to oblique orientation. Twigs with horizontal orientation, especially if 

the twig originated from water-sprout branches, produced limited quantities of fruit. The majority of water 

sprout branches that grew horizontally gave rise to lateral twigs that grew vertically and produced fruit. In 

addition to the growth orientation of fruit-bearing twigs, branching order pattern did not determine the 

location of fruit-bearing twig. Fruit-bearing twigs were found on the first, second, third, and on higher 

branching order. Furthermore, multiple numbers of inflorescences or fruit clusters can occur on the same 

fruit-bearing twig. For instance, once the first inflorescence has developed and set on the young twig, the 
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twig continues to grow or elongate, producing consecutive inflorescences, while the section where the first 

inflorescence was initiated develops fruit (Chapter 4). 

 

Tapering for above and belowground link of different categories showed a similar pattern with wood having 

the greatest tapering coefficient compared to branches and twigs, although aboveground wood tapering (0.1) 

was 18 % greater than belowground wood tapering (0.085). Density for aboveground twig, branch, and wood 

was around 0.3 g cm-1 although wood had the greatest density at 0.34 g cm-1. The aboveground density 

values are very close to the density values determined for four month old jatropha seedlings by Achten et al. 

(2010d), 0.2 g cm-1 (SD = 0.01) for stem and 0.26 g cm-1 (SD = 0.03) for wood parts. On the contrary, 

density of wood for the belowground category had a lesser density 0.26 g cm-1 compared with the branch 

(0.36 g cm-1) and twig (0.48 g cm-1). Mujumdar et al. (2000) and Krishnamurthy et al. (2012) found jatropha 

roots had a well-defined cortex of which large parenchymatous cells arranged centripetally that were mostly 

for water storage and had xylem vessels with assorted sizes, but did not have xylem fibres. The absence of 

xylem fibres explains the light wood characteristic of jatropha. 

3.3.2 Adjustments to the FBA model 

As data showed that a single tapering coefficient was insufficient, three separate tapering coefficients for 

twig, branch, and wood were introduced. Estimates for fruit biomass were also included, based on distance 

between fruit on twigs of specified diameter. 

3.3.3 FBA output and allometric equations 

Figure 3.2 shows the predicted increase of above and belowground biomass with increased ratio of proximal 

root diameter to stem base diameter. The increase in total aboveground weight was much greater than total 

proximal root weight. For total aboveground weight, branch category made the biggest contribution to total 

aboveground weight followed by twig and leaf, and finally by fruit. The data serves as the basis for 

construction of allometric equations (Table 3.2). 
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Figure 3.2 Relationship of biomass and ratio diameter of proximal root to stem base from FBA output. 

 

The scaling coefficients derived for total aboveground biomass (2.58) were greater than proximal root 

biomass (Section 2.12). Twig and leaf biomass scaling was similar to fruit biomass. This is because twigs 

bear leaves and fruit. 

 

FBA for belowground only simulates proximal root biomass, and not the remaining root biomass such as the 

taproot and other roots that originate from the taproot. For this reason, the scaling coefficient for the 

remaining roots required the use of an empirical allometric power equation with regression analysis. 

Analysis using LTS regression gave an allometric constant (a) of 0.018 and scaling coefficient (b) of 1.33 (p 

> .0001). See Appendix 6 for details. 

 

Table 3.2 FBA allometric constants and scaling coefficients ( ) for above and belowground biomass. 

FBA scaling coefficients a b 

Aboveground 

Total biomass 0.0090 2.5825 

Branch biomass  0.0088 2.2666 

Twig & leaf biomass  0.0085 2.1209 

Fruit biomass 0.0004 2.1127 

Belowground Proximal root biomass 0.0097 2.1870 

 

3.3.4 FBA validation 

Figure 3.3 shows a direct comparison around a 1:1 line for FBA predicted and measured values derived from 

destructive measurements. The FBA model was able to predict total aboveground biomass, branch biomass, 

and twig and leaf biomass for all jatropha except one. This exception had a much larger basal diameter and 

was outside the FBA range for the other samples. This outlier was retained within the analysis based on 
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statistical advice as it provides a more realistic representation of the phenotypic or morphological plasticity 

(heterogeneity) that currently exists with the planting material. Until more uniform planting material can be 

developed through intensive breeding and selection, the high levels of heterogeneity will require careful 

statistical consideration. The residuals between measured and predicted (FBA model) for total aboveground 

jatropha biomass showed significant negative correlation with tree height (R2 = 0.89; P = 0.015), crown 

height (R2 = 0.91; P = 0.013) and width (R2 = 0.89; P = 0.019). This resulted in a short crown being predicted 

as having a massive crown, while a long crown was predicted as having a small crown. Similar to crown 

height, a narrow crown was predicted as having a wide crown, while a wider crown was predicted as having 

a narrower crown. FBA for tree height was generated by adding crown height and length of stem/trunk, 

therefore bias in crown height resulted in bias in tree height as well. 

 

 
Figure 3.3 Comparison of predicted and measured aboveground tree biomass components: A) measured total 

biomass, B) measured branch biomass, C) measured twig and leaf biomass and for belowground D) 

measured total proximal root biomass. 

 

Comparison of predicted and measured belowground biomass shows the model is able to predict total 

proximal biomass for total proximal root of some trees, but over-estimated small proximal roots in some, and 

under-estimated large proximal roots in others. Unlike links for the aboveground, the proximal root link for 
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belowground had a different size, shape and length, especially for diameter of branch and wood category 

links. 

 

Overall, statistical analysis for total aboveground biomass, branch biomass, and twig and leaf biomass 

indicate the model has an acceptable prediction range and is applicable for biomass estimation (Table 3.3). 

Statistical analysis of fruit biomass was not able to confirm viability of the FBA model. Fruit data were 

limited with only four of the ten trees having fruit. FBA generates fruit biomass based on fruit bearing twig 

diameter and information relating to this link was limited. 

 

Table 3.3 Statistical validation of FBA model for above and belowground biomass estimation. 

Parameter 

Optimum 

& range 

values 

Aboveground biomass 
Belowground 

biomass 

Total Branch 
Twig & 

leaf 
Fruit 

Total proximal 

root 

R2 (1, ≥ 0) 0.93 0.90 0.92 0.05 0.56 

Maximum error (ME) (0, ≥ 0) 2.16 0.64 0.29 0.04 0.39 

Root mean square error (RMSE) (0, ≥ 0) 27.86 18.49 15.33 62.80 25.36 

Modelling efficiency (EF) (1, ≤ 1) 0.66 0.86 0.89 -0.06 0.52 

Coefficient of residual mass (CRM) (0, ≤ 1) -0.03 0.06 0.003 0.19 0.02 

Coefficient of determination (CD) (1, ≥ 0) 0.46 0.83 0.76 5.75 1.17 

 

Statistical analysis of total proximal root biomass for belowground showed that the proximal root diameter 

used in the FBA model only accounts for 56 % (R2 = 0.56) of the total proximal root biomass. The remaining 

percentage was attributable to other, unknown variable(s). 

3.4 Predictors for aboveground biomass 

According to the FBA model, above and belowground branching is interconnected and subject to the same 

rules, therefore stem base diameters relate to root collar diameter and sum of squared diameter proximal 

roots. Using these independent variables to predict aboveground total biomass of the ten sample trees, the 

result shows that stem base diameter is the best predictor; followed by square root of sum squared diameter 

proximal root, root collar diameter and number of proximal root (Table 3.4).  
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Figure 3.4 Biomass of measured and predicted aboveground total weight generated from several independent 

variables using FBA allometric coefficients in ten trees. 

 

RMSE for stem base diameter is 27.9, square root of sum squared diameter proximal root is 37.5, root collar 

diameter is 50.1, and number of proximal root is 56.6. The sum of squared diameter proximal root 

overestimates aboveground biomass because the diameters include the structures that function as water 

storage units. 

3.4.1 Comparison with other jatropha allometric equations 

Empirical allometric equations are available for jatropha biomass from other studies (Table 3.4). Achten et 

al. (2010d) developed empirical allometric equations using stem diameter to estimate aboveground biomass 

based on data obtained from 41 jatropha seedlings (up to 3 cm stem diameter), while Ghezehei et al. (2009) 

used stem base diameter and other predictors to develop allometric equations for aboveground biomass 

estimation using 12 samples aged 16 to 24-month-old. Makungwa et al. (2013) developed two aboveground 

biomass allometric equations that were based on stem diameter measured at 10 cm aboveground. These were 

taken from 172 and 442 samples of one and three-year-old jatropha planted as smallholder crop boundary 

hedges, in five different regions. Firdaus and Husni (2012) determined allometric equations for aboveground 

and belowground biomass using stem diameter from 15 samples of 6 to 46-month-old jatropha. Baumert and 

Khamzina (2015) developed above and belowground biomass allometric equations using stem diameter 

measured at 20 cm aboveground. The allometric equations were classified as juvenile, adult, and mature 

based on stem diameter grouping. Data were collected from 141 jatropha plants aged 1 to 20 years, taken 

from various production systems. 
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Table 3.4 Jatropha allometric equations from several sources. 

Allometric scaling coefficients Number of Sample a b 

Aboveground 

Achten et al. (2010d) 41 0.029000 2.328 

Ghezehei et al. (2009) 12 0.000907 3.354 

Makungwa et al. (2013) 1st equation 172 0.006700 2.891 

Makungwa et al. (2013) 2nd equation 442 0.005500 2.769 

Firdaus & Husni (2012) 15 0.002330 3.320 

Baumert & Khamzina (2015) Juvenile stage  0.003000 2.740 

Baumert & Khamzina (2015) Adult stage 141 0.003000 3.030 

Baumert & Khamzina (2015) Mature stage  0.016000 2.310 

Belowground 

Firdaus & Husni (2012) 15 0.000880 3.110 

Baumert & Khamzina (2015) Juvenile stage  0.001000 2.710 

Baumert & Khamzina (2015) Adult stage 141 0.001000 2.920 

Baumert & Khamzina (2015) Mature stage  0.016000 1.880 

Note: a = intercept, b = power coefficient 

 

In Figure 3.5 we present the intercept (a) and power coefficient (b) relationships for jatropha allometric 

equations from six authors, including our jatropha FBA. While the result shows a strong a and b relationship 

with only one degree of freedom it does not indicate any biological association. It does however suggest that 

for a particular value of a, only a limited range of values for b might be exist, irrespective of any factors 

(Hairiah et al., 2011). In essence, this allows us to simplify matters and develop one jatropha 

biomass/diameter allometric equation. 

 

 
Figure 3.5 Relationship of intercept (a) and power coefficient (b) from allometric equations for jatropha from 

several sources. 
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Despite the apparent differences in parameters, a comparison of total aboveground jatropha biomass in 

relation to stem base or stem diameter showed similar trends between published sources and the FBA results 

(Figure 3.6). Achten et al. (2010d), the first equation of Makungwa et al. (2013) and Firdaus and Husni 

(2012) share similar patterns with the highest aboveground biomass estimations, whereas Ghezehei et al. 

(2009) and juvenile stage of Baumert and Khamzina (2015) share the lowest aboveground biomass 

estimations. The second equation of Makungwa et al. (2013), jatropha FBA, adult and mature stage of 

Baumert and Khamzina (2015) are situated in the middle of previous two patterns. The grouping pattern for 

increasing biomass with increasing diameter is likely due to similarities in age. Moreover variations in 

jatropha biomass across different sources derived from empirical allometric and jatropha FBA can be caused 

by differences in planting material, site characteristics such as soil, vegetation and over-storey structure 

(MacFarlane et al., 2014), or in silvicultural practices and development stage or age at the time data were 

collected (Makungwa et al., 2013). 

 

 
Figure 3.6 Relationship of aboveground biomass and diameter at stem base using different jatropha 

allometric equations from several sources. 

 

As further explored in on-going research for allometric equations of other species (Harja, pers. comm.), a 

reformulation of the allometric model to , with a reference diameter (x) of in this case about 14 cm, 

can maximise statistical independence of the modified a (Yx) and the b parameter for all jatropha results 

(Table 3.4 plus our study). The FBA result for Y (14) is 15 % lower than the mean of the previous studies.  

3.4.2 Ratio below to aboveground biomass 

The ratio of below to aboveground biomass or root to shoot ratio (R/S) is a widely used measure to estimate 

belowground biomass as it is much easier to measure biomass aboveground than belowground. The ratio 
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between belowground to aboveground biomass for this study was determined at 0.5 (SD = 0.13). The 

aboveground biomass explained 83 % (R2 = 0.83) of the variation in the belowground biomass (Figure 3.7). 

 

Firdaus and Husni (2012) using destructive sampling determined the below to aboveground ratio to be 0.4 

for seedlings aged 6 to 46 months in wasteland areas in Malaysia. Rao et al. (2013) also using destructive 

sampling, found the below to aboveground ratio to be around 0.3 for jatropha trees aged 8 years in Southern 

India. Wani et al. (2012) used a below to aboveground ratio of 0.2 to factor the belowground biomass for 

trees aged 3 to 5 years in Northern and Southern parts of India. Use of a 0.2 ratio clearly underestimated 

belowground biomass compared with empirical data. 

 
Figure 3.7 Relationship between belowground and aboveground biomass. 

 

Differences in the below to aboveground ratio results can be due to planting material and tree age, also the 

agro-ecological conditions of soil, climate and management practises, but also measurement methods, 

especially for belowground biomass (Mokany et al., 2006; Kuyah et al., 2012). 

3.5 Discussion 

The FBA model produces both good and poor aboveground biomass estimates of jatropha. This is dependent 

on how well the jatropha fits the fractal-like allometric scaling dimensions. The poor estimation of 

aboveground biomass results from inconsistencies in the bias for crown height and width, and tree height 

estimations. FBA generates crown height by summing the length of links specified by length-diameter 

relationships. The way link length relates to link diameter is a key relationship in the FBA model 

calculations. Our data for twig, branch, and wood links did not linearly relate to link diameter and showed a 

wide variation between trees (Appendix 5), with the exception of twigs bearing fruit (Figure 3.1). In the 

absence of such relationship, FBA uses a single value for mean and variance, independent of diameter. 

Biologically, this relationship is complex as link length is determined by the development and disappearance 

(self-pruning) of branches, in the axes of (former) leaves. Enhanced development of side branches at the 
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crown surface leads to shortening of link lengths, while shading of the lower branches leads to senescence of 

side branches (Mäkelä and Valentine, 2006) and secondary elongation of links as measured in the FBA 

protocol. Such trees can be thought of as ‘disrupted fractals’ where the lengths of links of different diameter 

branches are somewhat randomised due to historical branch development that effects link length 

(MacFarlane et al., 2014). This may explain why further statistical approaches using mean link length and 

measured variability were sufficient to reconstruct measured biomass for some (jatropha), but were still 

insufficient to predict biomass for others. Although, this technique provides more structure (predictability) in 

the location of shorter and longer links in the crown than FBA uses, it cannot fully capture the wide variation 

between jatropha links. 

 

Jatropha in this study showed sympodial growth, some with dichasia, and others with multiple branching. 

The branching pattern follows Leeuwenberg’s model (Hallé et al., 1978). Other branching patterns are 

possible due to the high phenotypic plasticity. Sunil et al. (2013) observed several branching habits and 

patterns between different germplasm in a monoculture planting at 2 m × 2 m, with no pruning, and 

receiving similar management treatments. Although aboveground phenotypes show a wide range of 

plasticity, genetic diversity is narrow (Divakara et al., 2010). 

 

The FBA model generates the crown radius allometric coefficients using a vertical projection of the crown 

leaf area and assuming the shape is uniformly circular. This assumption does not hold for all jatropha so 

wide crowns may be underestimated while narrow crowns, overestimated. Jatropha grown in a plantation 

environment may not develop crowns that reach their full potential as they compete within a limited growing 

space for light, soil nutrient, and water (Mäkelä and Albrektson, 1992; Martin et al., 2012). For instance, 

competition for light between trees may result in shoot or tree crown clumping or self-pruning (Duursma and 

Mäkelä, 2007). Adding to the complexity of competition is the fact that the jatropha used in the FBA 

calculations showed substantial phenotypic plasticity. This is despite the fact that the planting material is 

from one improved population. Future biomass prediction with FBA model may benefit from stratified 

sampling based on different diameter classes, crown size and shape. 

 

FBA calculates tree height by adding trunk/stem length with fractal crown height. The source of tree height 

bias for some jatropha came from the crown height bias, as there was no significant correlation between 

residuals of FBA stem height and measured stem height. Jatropha stem lengths used in this study varied from 

2 cm to 40 cm from soil surface therefore DBH normally used for developing tree allometric equation was 

replaced with stem base diameter measured at the middle of the stem length. Moreover, jatropha used in this 

study was only four-year-old and had stem base diameters ranging from 7 cm to 14 cm therefore a reduction 

in the wood link diameter categorisation to ≥ 7 cm was required. Consequently, data for wood and main stem 

parameterisation were identical. The strong tapering found for the main stem did not apply to the branches, 

therefore the FBA model was adjusted to use separate tapering coefficients for twigs, branches, and wood. 

The tapering coefficient interacts with the proportionality factor p of cross-sectional area before and after a 
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branching point, in determining the cross-sectional area before the next branching point. When this 

aboveground structure is considered, jatropha approximates a shrub more than a tree. 

 

FBA for forest trees construct a biomass for the crown wood, branches, twig and leaf, and add the trunk 

biomass separately as it is subject to other biological and management-related processes. Fractal (self-

similarity) properties of the branches are restricted to the crown (Mäkelä, 2002; Mäkelä and Valentine, 

2006). Similar to FBA for forest tree, jatropha biomass was constructed in the same way, with addition of 

fruit biomass. 

 

The FBA model also using parameters for fruit-bearing twigs predicted an allometric scaling coefficient (b) 

of 2.11 for fruit biomass relative to the stem base diameter. This is in agreement with a value of < 2.2 for the 

allometric scaling coefficient for plant reproductive biomass when the stem tapered (Niklas, 1993). Although 

the predicted scaling coefficient for fruit biomass is in agreement with other studies, the fruit data for this 

study was limited and results for older plants may differ. 

 

Corner’s rule recognises a positive correlation between twig size and leaf, inflorescence, fruit, and seed size 

(Westoby and Wright, 2003; Chen et al., 2010). For fruit-bearing twigs in jatropha, twig length and diameter 

were correlated; twig diameter was better as predictor of fruit presence than link length, with twig diameters 

between 0.9 cm and 1.4 cm representing 83 % of fruits observed. Chen et al. (2009) studied fruit-bearing 

twigs across 55 woody species and found that fruit and seed biomass were positively correlated with twig 

diameter, but negatively correlated with the ratio of twig length to diameter. Chen et al. (2009) also found 

that twig size was not significantly correlated with seed size, possibly due to the large variation in seed 

numbers per fruit and a negative relationship between seed size and number of seeds per fruit. 

 

Although the study of fruit-bearing twigs in relation to reproductive biomass is still in the very early stages, 

this study highlights the importance of architecture, especially when trying to correlate fruit biomass with 

breeding and management practices. Research into the relationships between length and diameter for links 

bearing fruit, fruit dimensions, and pericarp to seed ratios is required for improved simulations. It will also 

be important to investigate the critical switching point for twigs with diameters between 0.9 cm and 1.4 cm 

to understand why some twigs bear inflorescences and others do not. Moreover, fruit-bearing twigs can be 

located anywhere on the tree regardless of the branching order and often bear multiple inflorescences or fruit 

clusters (Chapter 4). Contrary to the observations by Ghosh et al. (2011) our results show that branches 

situated in the lower part of the canopy and shaded by upper branches do flower and produce fruit, although 

at a reduced level. If light does determine flowering, then there must be a range over which it operates given 

that inflorescence initiation and fruit set occurs in areas where light is limited. Such a range is likely 

influenced by resource availability and allocation in combination with twig diameter. This possibility opens 

up an interesting area of research into flowering physiology in response to twig size and external stimuli such 

as light quality and/or quantity. 



Chapter 3 

58 

It is important for plant breeders to understand age-related characteristics to be able to optimise genetic gains 

per unit of time, rather than waiting for a tree to start producing. An example of this is coffee breeding where 

yield prediction is possible through architectural development, as coffee only flowers and fruits on lignified 

plagiotrophic (horizontal) branches (Cilas et al., 2006). In coffee, the internode length between 

inflorescences on plagiotrophic branches is an important trait, as it not only determines carbohydrate 

allocation, but also carbohydrate distribution to inflorescences and fruit. Based on understanding of coffee 

tree architecture, selective branch pruning, branch-wounding (ring-barking) and grafting of productive 

plagiotrophic branches to other trees to increase yields is already standard management practice (Anim-

Kwapong and Adomako, 2010). Plant architecture has proved commercially beneficial in coffee breeding 

and may prove useful for future jatropha breeding and management practices. 

 

FBA belowground biomass estimation for total proximal root biomass had a greater bias compared with 

aboveground biomass. Proximal roots enlarge into structures that store water, a root structure not factored 

into the FBA pipe model theory. The theory determines that a pipe represents a ‘bundle of unit pipes’ each of 

which has a water and nutrient transport function (Mäkelä, 1986). The bundles of pipes are interconnected, 

one to the other where transport capacity is determined by the stem or proximal diameter (Van Noordwijk 

and Purnomosidhi, 1995). 

 

FBA belowground biomass estimations do not take into account taproot or stump biomass, as these organs 

do not follow a fractal model; these organs, however contribute 30 % of total measured belowground 

biomass in jatropha. For this reason, it is necessary to generate empirical allometric equations for the taproot 

using its diameter as the predictor variable. The estimated taproot weight can be added to estimated total 

biomass based on proximal roots as a predictor, to derive total belowground biomass. 

 

Jatropha roots typically are intermediate in branching pattern between a herringbone and dichotomy pattern 

(Van Noordwijk et al., 1994). Herringbone root systems minimise intra-plant root competition so are more 

effective at resource acquisition, despite their roots being larger, and more resource demanding. 

Dichotomous root systems have higher intra-plant competition although they are smaller and require fewer 

resources (Fitter et al., 1991). It is apparent that jatropha is able to respond to differences in resources 

availability through root structure modification. 

 

Implementation of the revised FBA model (with tapering coefficients depending on link diameter classes) for 

estimating jatropha biomass will be easier and cheaper than relying on destructive methods for further 

studies. For density measurements a small tree corer could be used to extract a sample, alternatively using 

previously published density values (MacFarlane et al., 2014). The revised FBA model offers estimations of 

biomass partitioning for fruit, twig and leaf, and branch, including total biomass. FBA also shows that 

aboveground fractals are interconnected with belowground fractals, and that root collar diameter and square 
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root of sum squared proximal root diameter can be used to estimate aboveground biomass. The best 

estimation for aboveground biomass however comes from using stem base diameter. 

 

Below to aboveground ratio is a function of genotype and a reflection of resource allocation and the 

limitations (stress) imposed within the environment (Taub and Goldberg, 1996; Aikio and Markkola, 2002). 

Although not fully understood above and belowground parts are functionally interdependent and able to 

maintain a dynamic biomass balance depending on resource availability. In basic terms when light is the 

predominant limiting factor, resources are allocated to aboveground growth, and when nutrients are the 

limiting factor, preference is given to belowground growth. Jatropha is a shade intolerant plant therefore a 

greater proportion of biomass is invested aboveground than belowground. In this study light was probably a 

limiting factor as canopy closure had already occurred in the four-year-old jatropha planted at 2 m × 2 m. 

The below to aboveground ratio is an indicator of functional plasticity (Aikio and Markkola, 2002) in 

response to growth-limiting resources. In jatropha the roots act as belowground storage organs as part of 

overall plastic response (Grams and Andersen, 2007). 

3.6 Conclusions 

From the FBA perspective, jatropha is categorised as a shrub more than a tree as it does not have prominent 

trunk. Implementation of a revised FBA model provides variable estimations of total aboveground biomass 

for twig, leaf and branch biomass depending on how well the jatropha fit the fractal branching architecture. 

The strength of this model is its application as a non-destructive technique for determining aboveground 

biomass. Fruit biomass was not well estimated so further research is required on fruit-bearing twigs and fruit 

dimensions to fine-tune the model. Proximal roots as a predictor of belowground biomass produced poor 

results because the cross sectional area of the proximal root do not follow the fractal branching pattern. One 

possible solution might be to use root diameters farther from the stem as basis for allometric equations. The 

measured below to aboveground ratio of 0.5 observed in this research was higher than in other jatropha 

studies. These differences highlight a degree of morphological plasticity that requires consideration when 

determining plant biomass. Below to aboveground ratio requires referencing against whole plant biomass for 

meaningful results. Relationships among jatropha seed yield and vegetative plant components under different 

management and cropping systems in Indonesia. 
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Abstract 

An understanding of how jatropha seed yield relates to vegetative plant components under different 

management regimes is lacking. Such information is necessary to predict yields and design management 

strategies. This study investigated yield and vegetative plant component interactions, and the effects of 

management practices in monoculture, intercropping, and hedge cropping systems in Indonesia. Monoculture 

and intercropping experiments in Gunungkidul Regency used jatropha IP-1M material; hedge experiments in 

Sumbawa Regency used the Sumbawa provenance. In two-year-old monoculture, pruning significantly 

decreased yield from 109 kg ha-1 to 28 kg ha-1 due to a 40 % decrease in canopy volume and leaf area index. 

In four-year-old jatropha intercropping, root barriers reduced yields 80 % by limiting jatropha root access to 

soil moisture and nutrients in the maize plantings. Intercropping without root barrier and with leaf mulch 

produced the largest yields of 25 kg ha-1. In hedge plantings, plant height influenced yield. Single rows of 

one-year-old monoculture produced 0.97 g m-1 at 10 cm spacing, 1.69 g m-1 at 30 cm, and 0.14 g m-1 for 20 

cm of mixed jatropha-gliricidia. Pruning significantly decreased leaf area index with 20 cm spacing 

indicating a higher proportion of aboveground biomass allocated for wood growth. Results indicate that seed 

yield across the three cropping systems can be determined by plant height and numbers of productive 

twig/branch, although number of inflorescence clusters per productive twig may be more important. Future 

research should focus on the transition of branches to reproductive phases, and on increasing numbers of 

productive twigs/branches and inflorescence clusters. 

 

Keywords: Hedge - Intercropping - Monoculture - Productive twig/branch - Pruning 
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4.1 Introduction 

Jatropha has been promoted as a biofuel crop with the potential to bring about socio-economic benefits and 

wasteland reclamation in tropical semi-arid regions. It is reported to grow in marginal areas without 

competing with food production, and with the possibility of providing carbon credits (Van Eijck et al., 

2014a). Although measured yields of 0.2 t ha-1 to 1 t ha-1 (Everson et al., 2013; Iiyama et al., 2013; Singh et 

al., 2013) are common and disappointing, recorded yields of 2 t ha-1 to 3 t ha-1 are encouraging (Achten et al., 

2008; Van Eijck et al., 2014a). 

 

Jatropha seed yield is determined by plant growth and biomass partitioning, and is a function of genotype 

(G), environment (E), and management (M). Research to improve yield has focused on genetic diversity (Yi 

et al., 2010; Osorio et al., 2014) using conventional breeding (Slingerland et al., 2014), interspecific 

hybridisation (Sujatha and Prabakaran, 2003; Basha and Sujatha, 2009), mutation breeding (Purwati and 

Hariyono, 2008), and genetic engineering (Slingerland et al., 2014). Improved planting material is then field 

tested in multi-locations to assess performance. In parallel with breeding research, improved management 

practices are developed. Pruning, plant spacing, fertiliser application, irrigation, and pest/disease 

management all play important roles in improving yield (Jongschaap et al., 2007; Ghosh et al., 2011; 

Rajaona et al., 2011; Everson et al., 2013; Singh et al., 2013). 

 

Pruning can improve yield by maintaining branch architecture through optimised spatial arrangement of 

branches and leaves, tree size, canopy structure and shape (Rajaona et al., 2011). Jatropha inflorescences 

develop at the ends of the (new) branches and pruning induces branching, leading to a belief that more 

branches equals more fruit (Gour, 2006; Kaushik et al., 2007a; Brittaine and Lutaladio, 2010; Everson et al., 

2013), larger yields and improved harvest index (HI) (Brittaine and Lutaladio, 2010). 

 

In Chapter 3 using four-year-old jatropha planted at Gunungkidul in Indonesia, we determined aboveground 

and fruit biomass allocation relative to plant architecture using FBA. Using the FBA model, we classified the 

plant into three categories, wood, branch, and twig according to diameter size. Wood has a diameter ≥ 7 cm, 

branch a diameter ranging from 2 cm to 6.99 cm, and twig category a diameter ≤ 1.99 cm. We found that 

jatropha fruit develop on twigs that in the majority of cases have diameters ranging from 0.9 cm to 1.4 cm 

(Chapter 3). We named these twigs, fruit-bearing or productive twigs as opposed to non-productive twigs. In 

addition, we developed allometric equations for estimating total aboveground, branch, twig and leaf, and 

fruit biomass based on stem diameter. 

 

Knowledge gaps exist regarding the effects of management such as pruning on seed yield, especially in 

relation to vegetative plant components such as tree height, stem diameter and biomass, canopy size, leaf 

area, number of productive twigs, and branch length. 
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Jatropha can be grown in monoculture, intercropping and as hedges (Wahl et al., 2009; Van Eijck et al., 

2014a). The choice of cropping system is often determined by environment and socio-economic factors. 

Jatropha monocultures in general require greater capital inputs as they are often larger in extent and more 

intensively managed than either intercropping or hedge systems. 

 

Intercropping jatropha with annual crops is a system that farmers use to maximise their economic return, 

while providing a degree of insurance against the loss or poor performance of one crop. The benefits of using 

the inter-row space, especially while the plants are still small, can be seen as an attractive proposition while 

waiting for first harvests (Wahl et al., 2009). When permanent intercropping is practiced, jatropha plants are 

often more widely spaced (Effendi et al., 2007). Growing trees or shrubs in combination with annual crops is 

a common agroforestry practice and has the advantage of improving soil fertility, recycling subsoil nutrients, 

reducing nutrient leaching, controlling soil erosion, and providing windbreaks (Ong et al., 1991). 

Disadvantages can however be experienced with competition for light, water, and nutrients depending on 

species selection. Pruning can be effective in minimising aboveground competition and the waste material 

used as mulch (Giller, 2001). Root pruning and root barriers can also be used to minimise belowground 

competition (Ong et al., 1991). 

 

Jatropha hedges are often planted by farmers as single rows for demarcation of property boundaries or as 

crop protection fencing (Henning, 2001; GTZ, 2009; Wahl et al., 2009; Iiyama et al., 2013). Little regard is 

however paid to seed harvest or yield potential as hedges are often planted at relatively close spacing (Wahl 

et al., 2009). In Indonesia trees planted at distances of 10 cm or less are common. In Banten and Sumbawa, 

jatropha or mixed plantings of jatropha and gliricidia (Gliricidia sepium) hedges have been observed. 

Gliricidia leaves are used as fodder while the wood is used for poles or firewood. 

 

The majority of information relating to jatropha seed yield and different cropping system practices is based 

on monoculture studies (Cholid et al., 2007; Santoso and Aryana, 2011; Suriharn et al., 2011; Everson et al., 

2013; Iiyama et al., 2013; Retnowati and Surahman, 2013; Singh et al., 2013). Data for intercropping 

(Effendi et al., 2007) and hedge (GTZ, 2009; Wahl et al., 2009; Iiyama et al., 2013) systems are limited and 

do not investigate yield from a plant component perspective. 

 

In Chapter 3, our findings were based on unpruned monocultures of jatropha and have not been tested in 

different management or cropping systems. For these reasons, the aim of this study was to determine 

jatropha seed yield, and to identify the vegetative plant components that influence seed yield under different 

management and cropping systems. 

 

The research objectives were: 1) to determine seed yield in monoculture, intercropping, and hedge systems; 

2) to understand which vegetative plant components significantly contribute to yield under different 
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management practices; 3) to determine whether or not there is a vegetative plant component pattern across 

the different management practices that can be used to estimate seed yield. 

4.2 Materials and methods 

4.2.1 Study sites and conditions 

The study was conducted in two locations in Indonesia. monoculture and intercropping studies were located 

at the Mulo Village in the Wonosari District, Gunungkidul Regency of Special Province Yogyakarta (8o 0’ 

N, 110o 34’ E, 185 m ASL). Hedge studies were conducted at the Leseng Village in Moyo Hulu District, 

Sumbawa Regency, Nusa Tenggara Barat, (8o 35’ N, 117o 27’ E, 76 m ASL). 

 

Gunungkidul has an equatorial rainforest climate with mean annual rainfall of 1,800 mm, occurring 

predominantly from November to April with dry periods from June to August or September. Mean annual 

temperature and relative humidity are 26 °C and 70 % respectively. The soils are Mollisols with texture 

varying from clay, silty clay to silty clay loam, with poor drainage. The soils are shallow, 10 cm to 50 cm 

with limestone beneath. Top soil (0 - 10 cm) pH (1: 5) was 7.7 with ~0.9 % organic carbon (Walkley-Black 

method) and total nitrogen (Kjeldahl method), phosphorus (Olsen method), and potassium (ammonium 

acetate pH 7) were 0.5 mg kg-1, 13.8 mg kg-1 and 0.2 cmol (+) kg-1 respectively. The site is located on land 

owned by PT. JGE. 

 

Planting material was seed propagated from IP-1M, an improved population of a first selection from 

Muktiharjo, Central Java (Hasnam and Hartati, 2006). Seedlings were transplanted at three months, planted 

approximately 20 cm deep, and spaced at 2 m × 2 m or 2,500 plants ha-1. No agricultural inputs were applied 

to the jatropha and local farmers’ harvested grass all year round from the plots for cattle feed. 

 

The Sumbawa site has an equatorial savannah climate with average annual rainfall of 1,451 mm from 

November to April or May and dry periods from June to August or September. The average annual 

temperature and relative humidity are 28 °C and 79 %. The soils are clay loam Inceptisols. In the top soil (0 - 

10 cm), pH (1:5) was 7.1 with ~1.8 % organic carbon and total nitrogen, phosphorus, and potassium were 1.0 

mg kg-1, 9.3 mg kg-1 and 1.2 cmol(+) kg-1. The site is a research field belonging to the University of Samawa 

and managed by PT. JORO. Planting material was seed propagated from local provenances with seedlings 

transplanted at around four months of age. Planting density was in accordance with treatments. No 

agricultural inputs were applied to the jatropha and mowed grass was left in the field. 

4.2.2 Experimental design 

All jatropha pruning was completed prior to the wet season and consisted of cutting back the trees to a height 

of 75 cm aboveground. Pruned trees were treated with fungicide (2 g L-1 Dithane-M45) and all cuts sealed 

with white, waterproof paint. To prevent Fusarium or Phythopthora infections, all jatropha in monoculture 
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and intercropping systems received 200 g per plant of the bio-fungicide Trichoderma in split applications, 

while jatropha in hedges received 15 g per plant. 

4.2.2.1 Monoculture 

In October 2012 a pruning experiment was established in Gunungkidul using two-year-old monoculture 

jatropha. The treatments were pruning and no pruning in randomised complete blocks with four replicates. 

Each treatment plot was 10 m × 8 m with 20 trees per plot planted at 2 m × 2 m. Data were collected from 

six trees in the middle of each plot. 

4.2.2.2 Intercropping 

The intercropping experiment involved four-year-old jatropha interplanted with maize and with all jatropha 

pruned. No unpruned jatropha treatments were included due to insufficient trees. Each plot was 5 m × 12 m 

with 3 rows of 7 trees per row, planted at 2 m × 2 m. Data were collected from 15 trees in the middle of each 

plot. Three rows of maize were planted between the jatropha at a spacing of 25 cm × 75 cm with maize edge 

rows positioned 75 cm from the jatropha. Two seeds were planted per hole and after two weeks, the less 

vigorous seedling was thinned out. P was applied at 72 kg ha-1 and K at 120 kg ha-1. 

 

The experiment was a randomised complete block design with 3 replicates and 2 factorial treatments. The 

first treatment compared a clear polythene sheet (400 μm) root barrier with no root barrier installed prior to 

tree pruning and maize planting. Trenches approximately 40 cm deep and 20 cm wide were dug 50 cm from 

the jatropha row on both alleys in the plot. Roots along the trenches were cut and 14 m lengths of polythene 

sheet installed. Polythene sheeting was retained 5 cm above the soil surface to prevent the spread of roots 

over the top of the barrier. The trenches were back filled with the subsoil returned first followed by top soil. 

 

The second treatment compared jatropha leaf mulch with no leaf mulch. All leaves (leaflets with petioles) 

from the pruning treatment (equivalent to 3.5 Mg ha-1) were air dried and incorporated into the soil during 

maize bed preparation, two weeks before planting. The intercropping experiment was conducted over two 

planting seasons, the first from 21st November 2012 to 3rd March 2013; the second from 23rd March 2013 to 

2nd July 2013. 

4.2.2.3 Hedge 

Two hedge experiments were established in April 2011. All hedges were single row plantings. The first 

experiment used jatropha seedlings in a split-split plot design with three replications. The main plots were 

planting distance, 10 cm and 30 cm with subplots of pruning and no pruning in the first year. In the second 

year the subplots were further divided into sub-subplots of pruned and not pruned. The second experiment 

used jatropha seedlings and 1 m gliricidia branch cuttings (planted 25 cm deep) in a split-split plot with four 

replications. The main plots were planting distance, 10 cm for jatropha monoculture and 20 cm for jatropha-

gliricidia in alternate or mixed plantings. There were two factorial treatments of pruning and no pruning in 

the first and second years. All pruning was performed 75 cm aboveground. 
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4.2.3 Plant measurements 

4.2.3.1 Non-destructive measurements 

Data for plant and stem height and diameter at 10 cm and 15 cm aboveground, canopy height or depth (tree 

height minus bare stem height), canopy width (mean of two perpendicular canopy diameters), numbers of 

leaves, numbers of productive twig and number of non-productive twig, twig length, number of branches, 

branch length, length and width of representative leaves, numbers and weight of fruit and seeds (yield) were 

collected before and after pruning for all experiments. 

 

For the purposes of this study a branch is defined as a woody structure directly attached to the stem, while a 

twig is defined as a smaller and younger developing structure attached to the branch. Differences in 

branching structure between monoculture, intercropping, and hedges necessitated the use of the term 

productive twigs for monoculture and intercropping, but productive branches for hedges. This is because no 

twig development was observed in the hedge system. Both terms relate to young woody parts that bear 

inflorescences or fruit. Non-productive twigs or branches do not bear inflorescences or fruit. 

 

Yield is defined as the weight of dry seed produced. Three plants were randomly selected from each 

treatment for schematic drawings to record branching and flowering patterns. 

 

After pruning, vegetative measurements for monoculture and hedge were conducted three times at three 

monthly intervals. Vegetative measurements for jatropha intercropping were conducted monthly for the two 

maize planting seasons. Fruit was harvested every 7 days to 10 days throughout the fruiting season for 

monoculture, intercropping, and hedge plantings. 

4.2.3.2 Destructive measurements 

Across experiments, wet field weight of jatropha pruned plant parts was determined separately and 

subsamples dried at 70 °C for 24 h to calculate a dry weight coefficient for biomass determination. For hedge 

experiments, three consecutive plants from each treatment were randomly selected and uprooted for biomass 

determination six months after pruning. 

4.2.4  Data analysis and statistics 

Average stem diameters at 10 cm and 15 cm aboveground were used as independent variables in allometric 

equations to calculate total aboveground biomass, branch, twig, and leaf and fruit biomass (Chapter 3). 

Canopy width and height were used to calculate canopy volume when the canopy was considered ellipsoid 

(Ghezehei et al., 2009). Leaf width and length were used to calculate leaf area (Pompelli et al., 2012) and 

together with number of leaves on representative branches, total branch numbers, and average branch length 

with leaves were used to calculate LAI (Larrauri, 2011). These data together with plant height, number of 

productive twig/branch, number of non-productive twig/branch and twig/branch length, and dry seed weight 
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are presented as treatment means. Prior to statistical analysis data were checked for normality and were log-

transformed (log (x+1)). To better describe the results, the mean of treatments across different plant 

components are presented using back-transform values. 

 

Initially the overall relationship between plant components and seed yield was determined using correlation 

and regression analysis. Similar analysis was performed according to treatment using selected parameters 

that were statistically significant (P < 0.05) in all treatments. Pearson correlation analysis and regression 

analysis were performed using SPSS statistics (V19, IBM Inc. Chicago, USA). Analysis of variance and post 

hoc test were performed using SAS 9.3 (SAS Institute Inc., Cary, NC, USA). 

 

For monoculture, ANOVA was performed for independent samples using the TTEST procedure. For 

intercropping and hedge, ANOVA and multiple comparisons of means were performed using GLM. Test of 

normality for all data was performed using UNIVARIATE analysis. Finally, a multivariate stepwise 

regression analysis was used to determine plant components that significantly contributed to yield. This 

analysis was performed using multivariate regression from SPSS statistics (V19, IBM Inc. Chicago, USA). 

Equations from the analysis are not back-transformed but presented in log scale. 

4.3 Results 

Correlation and regression analysis across the three cropping systems and treatments showed seed yield to be 

positively and significantly correlated with plant height, number of productive twig/branch, canopy volume, 

LAI, and total aboveground biomass. 

4.3.1 Monoculture 

The t-test results as presented in Figure 4.1 show significant differences between pruning and no pruning 

treatments for yield (P < 0.01), plant height (P < 0.01), canopy volume (P < 0.01) and LAI (P < 0.05), but 

not for number of productive twigs (P = 0.087) and total aboveground biomass (P = 0.11). 

 

It is clear that pruning reduces yield and plant components to varying degrees when compared with the 

unpruned treatments. Pruning reduced yield 75 % compared with no pruning; 11 g per tree and 44 g per tree, 

SED 0.46 or equivalent to 28 kg ha-1 and 109 kg ha-1 respectively and decreased plant growth resulting in 

reduced plant height response. Pruning reduced the number of productive twigs to 50 % compared with no 

pruning and pruning significantly reduced canopy volume and LAI by about 40 %, a response similar to 

aboveground biomass. 
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Figure 4.1 Mean seed yield and plant components of jatropha shrubs planted in monoculture system with 

pruning or no pruning treatments. ***Significant at P < 0.01; *significant at P < 0.05; ns= not significant 

according to t-test. Error bars represent standard error of mean difference (SED). 

 

In pruning and no pruning treatments respectively, 8 % and 13 % of productive twigs were observed to 

produce up to three sets of inflorescence clusters in one growing season (Figure 4.2). Overall 9 % of 

productive twigs had three inflorescence clusters, 31 % had two inflorescence clusters, and 61 % had one 

inflorescence cluster. No significant differences were observed between pruning and no pruning treatments 

for numbers of inflorescence clusters. 

 

 
Figure 4.2 Schematic drawing of pruned (A) and no pruned (B) jatropha shrubs in monoculture system. The 

circles indicate a twig that bore 3 clusters of fruit or inflorescence. 

 

Multivariate stepwise regression analysis for all data showed monoculture seed yield to be positively related 

(R2 = 0.53; SE = 0.44) to plant height and number of productive twigs (Equation 4.1). A similar relationship 
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was found for the no pruning treatment (Equation 4.2) where R2 was 0.46 (SE = 0.41). However, for the 

pruning treatment (Equation 4.3), yield was proportional to the number of productive twig and LAI (3) with 

R2 = 0.51 (SE = 0.44). 

 

               Equation 4.1 

               Equation 4.2 

                             Equation 4.3 

4.3.2 Intercropping 

Intercropping treatments with no root barrier and with mulch (Figure 4.3A) produced the highest yields (25 

kg ha-1), canopy volume (Figure 4.3D) and LAI (Figure 4.3E). Interestingly plant height (Figure 4.3B) and 

aboveground biomass (Figure 4.3F) were only about 10 % larger. This response was consistent for all plant 

components, except number of productive twigs (Figure 4.3C) where no significant differences were 

observed between treatments. Rather the results were due to increased numbers of inflorescence clusters and 

fruit set on limited numbers of productive twigs. In the intercropping experiment, 1 % of the plants produced 

five inflorescence clusters in one growing season, 3 % produced four clusters, 14 % produced three clusters, 

and 33 % produced two clusters while 49 % had only one cluster. 

 

Root barriers reduced yield 80 % by limiting root access to soil moisture and the nutrients in the area where 

maize was grown. Yield was not significantly different between no root barrier with mulch (10 g per tree or 

equivalent to 25 kg ha-1) and no root barrier with no mulch (5 g per tree or equivalent to 12 kg ha-1), despite 

the 60 % reduction. Differences between mulch and no mulch for no root barrier were significant for canopy 

volume (Figure 4.3D) and LAI (Figure 4.3E) indicating mulch may have provided nutrients and helped retain 

soil moisture resulting in increased plant growth. 

 

Multivariate stepwise regression analysis for all data showed yield was positively related to plant height and 

the number of productive twig (Equation 4.4), although the relationship was not strong (R2 = 0.201; SE = 

0.55). Canopy volume, LAI, and aboveground biomass did not contribute significantly to seed yield 

determination. Further analysis of root barrier and mulch treatments shows that for root barrier with mulch 

(Equation 4.5) the R2 value is 0.642 (SE = 0.31) and without mulch (Equation 4.6) the R2 value is 0.371 (SE = 

0.31), both are significant for the relationship between seed yield and the number of productive twigs. No 

significant plant component relationships for yield were observed in the treatments with and without mulch 

and no root barrier.  

 

              Equation 4.4 

                                                              Equation 4.5 

                                                              Equation 4.6 
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Figure 4.3 Mean seed yield and plant components of jatropha shrubs in intercropping system with 

combinations of root barrier and mulch treatments. Means with the same letter are not significantly different. 

Error bars represent standard error of mean difference (SED). 

4.3.3 Hedge 

Results for the hedge study are from the first pruning as the second pruning in the following year failed to 

produce seed. 

  

  

  
 

Mulch No 
mulch

Mulch No 
mulch

Root barrier No root barrier

(A)

b b

a

ab

0

2

4

6

8

10

Se
ed

 y
ie

ld
 (g

 t
re

e 
/ y

ea
r)

0

(B)

Mulch No 
mulch

Mulch No 
mulch

Root barrier No root barrier

b ab
a

ab

0 0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pl
an

t h
ei

gh
t (

m
 / 

 tr
ee

)

0.0

(C)

Mulch No 
mulch

Mulch No 
mulch

Root barrier No root barrier

a

a a

a

0 0

0.5

1.0

1.5

2.0

2.5

3.0

N
o.

 p
ro

du
ct

iv
e t

w
ig

 (
tw

ig
 /

  t
re

e)

0.0

(D)

Mulch No 
mulch

Mulch No 
mulch

Root barrier No root barrier

b
b

a

b

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
an

op
y 

vo
lu

m
e 

 (m
3 

/ t
re

e)

0.0

(E)

Mulch No 
mulch

Mulch No 
mulch

Root barrier No root barrier

0

b
b

a

ab

0

1

2

3

4

5

6

7

8

Le
af

 A
re

a 
In

de
x 

(L
A

I 
/ t

re
e)

(F)

Mulch No 
mulch

Mulch No 
mulch

Root barrier No root barrier

a a a

a

0 0

0.5

1.0

1.5

2.0

2.5

3.0

A
bo

ve
gr

ou
nd

 b
io

m
as

s (
kg

 / 
tre

e)

0.0



Chapter 4 

72 

4.3.3.1 Hedge with spacing of 10 cm and 30 cm 

Seed yield (Figure 4.4A), number of productive branches (Figure 4.4C), canopy volume (Figure 4.4D) and 

LAI (Figure 4.4E) were all largest at 30 cm spacing after the first pruning treatment. At 30 cm spacing, the 

difference between pruned and unpruned plants was only significant for canopy volume.  

 

 
Figure 4.4 Mean seed yield and plant components of jatropha shrubs in hedge system with combination of 

plant spacing of 10 cm or 30 cm and pruning treatment. Means with the same letter are not significantly 

different. Error bars represent standard error of mean difference (SED). 
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Plants at 10 cm spacing yielded significantly less seed, fewer productive branches, and had a smaller canopy 

volume and LAI than at 30 cm spacing. No significant differences between pruning treatments were 

observed. Numbers of productive branch (Figure 4.4C) followed a similar pattern to seed yield (Figure 

4.4A). 

 

In hedges, multiple inflorescence clusters also occurred per productive branch (16 % three clusters, 27 % two 

clusters, 57 % one cluster), but were not the only or main determining factor. In contrast with monoculture 

and intercropping, the number of productive branches for hedges was not identified as a determinant of seed 

yield. 

 

Overall multivariate stepwise regression analysis for hedge data showed that plant height was most strongly 

related to yield (Equation 4.7), R2 = 0.247 (SE = 0.32). Similar yield relationships held when taking into 

account planting density and pruning treatments, but with varying strength of the relationship between the 

plant height and seed yield. The R2 for 10 cm spacing after first pruning (Equation 4.8) was 0.098 (SE = 

0.16) and without first pruning (Equation 4.9) was 0.185 (SE = 0.25), while the R2 for 30 cm spacing after 

first pruning (Equation 4.10) was 0.375 (SE = 0.43) and without first pruning (Equation 4.11) was 0.234 (SE 

= 0.32). 

 

                                                                    Equation 4.7 

                                                                    Equation 4.8 

                                                                     Equation 4.9 

                                                                  Equation 4.10 

                                                                  Equation 4.11 

 

4.3.3.2 Hedge 10 cm monoculture and hedge 20 cm mixed 

No significant differences were observed for yield (Figure 4.5A) at either 10 cm or 20 cm spacing 

irrespective of the jatropha pruning treatment. Although yield was less after the first pruning for the 20 cm 

mixed planting, both the 10 cm and 20 cm spacing share a similar pattern for the numbers of productive 

branches (Figure 4.5C). While smaller yields may be a pruning response where a reduced LAI and slowed 

growth provides a disadvantage compared to no pruning, plant height (Figure 4.5B) was not affected. Plant 

height, canopy volume, and aboveground biomass in 20 cm mixed plantings were significantly larger than 

for 10 cm monoculture, but no significant differences were observed with pruning. The majority (59 %) of 

productive branches had two inflorescence clusters, 34 % had one cluster and 7 % had three clusters. 

 

Interestingly no link between number of productive branches and canopy volume was observed (Figure 4.5C 

& D). Despite taller plants and greater canopy volume, LAI (Figure 4.5E) was reduced in the 20 cm mixed 
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plantings with a significant difference between pruning treatments. Increases in aboveground biomass were 

predominantly associated with stem wood production and did not produce more productive branches or 

increase yield. No significant differences were observed between pruning treatments at either spacing.  

 

Regression analysis of all data shows only plant height was related to yield, although the R2 value was very 

small, 0.01 (SE = 0.13) so no further analysis is presented. 

 

 
Figure 4.5 Mean seed yield and plant components of jatropha shrubs in hedge system with combination of 

plant spacing of 10 cm monoculture or 20 cm mixed and pruning treatment. Means with the same letter are 

not significantly different. Error bars represent standard error of mean difference (SED). 
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4.4 Discussion 

4.4.1 Pruning effect on seed yield and plant components 

Pruning prior to the wet season or after leaf shedding increased seed production 6 to 8 months later through 

inflorescence development on new branch and twigs (Gour, 2006; Brittaine and Lutaladio, 2010; Van Eijck 

et al., 2010; Everson et al., 2013). For this study, all jatropha was pruned to 75 cm aboveground, a common 

practice in Indonesia, India, South Africa and Thailand. Pruning to other specific heights is also practiced  

(Ghosh et al., 2011; Suriharn et al., 2011; Everson et al., 2013; Singh et al., 2013). From 2004 to 2008 when 

investment in jatropha was intense (hype), growers in Indonesia often retained only two or three primary 

branches then prune again the following year, retaining the next two or three new branches (Cholid et al., 

2007; Hariyadi et al., 2011). The objective was to develop a tree that has a total of 40 final branches which 

was considered optimal for fruit and seed production (Cholid et al., 2007). This idea was based on 

observations of young (one-year-old) jatropha with dichotomous branching of three or four branches. This 

plant produced more than 50 fruit per tree per year, the equivalent of around 0.3 t ha-1 seed at a planting 

density of 2 m × 2 m. It was assumed that increased yield (fruit and seed production) would result from the 

arithmetic multiplication associated with the dichotomous branching, producing predicted yields of 4 t ha-1 to 

5 t ha-1 at five years of age (Cholid et al., 2007). 

 

Our study shows that pruning two-year-old monoculture jatropha reduced vegetative growth and yield in 

comparison to no pruning (Figure 4.1) by changing the contribution of plant components to yield 

determination. After pruning, plant height makes no significant contribution to yield, although numbers of 

productive twig and LAI do (Equation 4.3). This is possibly because pruning was performed only at 75 cm 

aboveground resulting in similar sized plants. Our findings align with those of Cholid et al. (2007) who 

found reduced tree height after pruning although it was in one-year-old jatropha, but with new branch 

development twice that of the control. This was observed in all pruning treatments where branches were cut 

at 30 cm, 45 cm, and 60 cm aboveground. Interestingly Singh et al. (2013) recorded significant decreases in 

new branch development as pruning heights increased from 30 cm, 45 cm, to 60 cm aboveground; however 

this was in only one of seven sites. No mention is made of the cause of these differences between sites as 

neither author relate plant height or branch development to seed yield. 

 

It is difficult to compare pruning effects on yield with other research as not all published studies included an 

unpruned control (Suriharn et al., 2011; Everson et al., 2013). Furthermore differences in planting material, 

tree age, planting density, fertiliser applications, and pruning heights or techniques add complexity to yield 

comparisons (Jongschaap et al., 2007). As the effect of pruning on plant components differed between 

authors and relations between plant components and seed yields were not established, the use of their results 

for improving seed yields is extremely limited. 
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In the intercropping experiment, all plants were pruned at four years of age. Overall pruned plants with root 

barrier and mulch treatments showed that plant height and number of productive twigs contribute to seed 

yield determination (Figure 4.3). In the intercropping experiment, increased yield was not a function of 

increased number of productive twigs, but rather of productive twigs having multiple inflorescence clusters. 

After pruning the productive twigs produced terminal inflorescences, however after inflorescence set, branch 

development continued resulting in multiple inflorescence clusters. 

 

Although yield and productive twig/branch is significantly related across the three cropping systems, it does 

however seem that for intercropping under root/mulch treatments there is a shift in the distribution of 

inflorescence clusters when compared with the monoculture. The differences in inflorescence distribution 

between intercropping and monoculture may be due to different age and aboveground competition. In 

monoculture, the jatropha is two-year-old and experienced aboveground intra-species competition. Plants 

with this condition showed an increase in flowering on new productive twigs. In intercropping, the jatropha 

is four-year-old and experienced aboveground inter-species competition with maize. Instead of allocating 

resources to flowering in more new productive twig, it allocated more flowering to the already existing 

productive twig. Although this hypothesis has not been tested, as we did not have control of four year-old 

jatropha in the intercropping, it does provide some new insight into jatropha reproductive behaviour and 

highlights a possible future research direction. 

 

In Chapter 3 unpruned jatropha (n = 10) in four-year-old monoculture plantings, the aboveground biomass 

allocation to different plant parts shows partitioning to fruit is 1 %, to leaf 8 %, and to stem, branch and twig 

is 91 %. It is therefore not surprising that pruning influences vegetative structures as opposed to generative 

and yield, as was shown in the second hedge experiment (Figure 4.5), at least in the short term. 

 

It seems the two plant components consistently contributing to yield determination in all cropping systems 

are plant height and numbers of productive twig/branch. Plant height response may indicate a level of tree 

maturity crucial to productive twig development; however, this cannot be confirmed without further 

research. As for productive twig/branch, it is defined as the section of a branch where inflorescences and 

fruit develop and grow so logically it contributes to yield. 

 

Prior to this study it was assumed that pruning would increase new branches and promote inflorescence 

development. However our results, and results from Chapter 3 show that not all new jatropha branches 

produced inflorescences. On the other hand, already productive twig/branches may increase their number of 

inflorescence clusters. Despite an extensive literature search, no studies were found that assess the effects of 

pruning on twig/branch productivity. 

 

Pruning techniques have been used successfully in fruit trees to maximise yields. Pruning has two basic 

structures, formative pruning to create a strong framework to support heavy fruit loads, and maintenance 
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pruning to remove superfluous vegetative growth and promote generative growth (Brunner, 1990; Grossman 

and DeJong, 1998; Van Eijck et al., 2010). Techniques used include open-centre crown (vase shape) pruning 

for peach, nectarine, and plum trees (Brunner, 1990; Grossman and DeJong, 1998), and spindle crown 

(central leader) pruning for apple and pear trees (Brunner, 1990). Coffee is another example where selective 

pruning and grafting of productive horizontal (plagiotrophic) branches with shorter internodes and high 

numbers of fruit clusters has been successful (Anim-Kwapong and Adomako, 2010; Gichimu and Omondi, 

2010). The suitability of these pruning techniques for improving yield in jatropha remains to be investigated. 

Our findings imply that future research to increase seed yield needs to focus on understanding the processes 

that lead to 1) increasing numbers of productive twig/branch and 2) number of inflorescences per productive 

branch. Based on this knowledge appropriate breeding and selection goals, and pruning techniques to 

maximise seed yield can be developed. 

4.4.2 Seed yield and pruning effect in relation to resource availability 

In monoculture, reductions in vegetative growth and yield due to pruning were in response to long time 

requirements for new branch, twig, leaf, fruit, and seed development. The experimental site had low soil 

fertility, which might help explain this slow growth response. 

 

In the intercropping system, pruning in combination with jatropha leaf mulch applied to maize without root 

barriers produced the highest seed yields (25 kg ha-1). A yield response due to mulch was expected given 

jatropha leaf N analysis ranged from 2 % to 3.6 % (Jongschaap et al., 2007; Ghosh et al., 2011), equivalent 

to an additional N application of 70 kg ha-1 to 126 kg ha-1. Without a root barrier the roots of jatropha had 

unlimited access to the P and K applied to the maize intercrop. In addition to yield, height, and canopy 

volume, LAI also increased with resource availability. This is in line with the negative effect of pruning on 

vegetative growth and seed yield in the resource poor environment in the monoculture experiment. 

 

In the jatropha hedges, wider spacing increased yield. While the higher yields are likely due to increased 

access to soil moisture and nutrients, hedges are single row plantings therefore each plant already has 

unlimited access to resources either side of the planting. Close spacing might however lead to intraspecies 

root competition. The greater aboveground biomass for 20 cm jatropha-gliricidia plantings may be due to 

positive interactions between the jatropha and gliricidia. Gliricidia is a nitrogen fixing tree that can increase 

nitrogen and organic matter availability to jatropha through leaf and root turnover (Giller, 2001). 

 

Although our study was conducted at two contrasting sites using two jatropha genotypes, it appears that 

nutrient availability might favour yield response in relation with pruning treatment. Future research to 

investigate a range of nutrient levels, possibly in combination with water provision may well provide 

valuable information for improving yield and management practices. 
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4.4.3 Pruning, planting density, plant components, and seed yield 

Literature related to hedge management using pruning height and planting density in jatropha is very limited. 

In hedge plantings at 10 cm and 30 cm spacing, differences were observed for canopy volume and LAI 

without corresponding differences in aboveground biomass. This indicates a less dense and possibly more 

elongated canopy for the 30 cm spaced plants, which may not be conducive to the production of 

inflorescence clusters. 

 

LAI was lower for the 20 cm spacing mixed hedge plantings than for the 10 cm spacing monoculture hedges. 

The smaller LAI is in response to more vigorous growth in the jatropha as it outgrew the gliricidia. 

Regardless of treatment combination, yield was correlated with plant height. Where plants are situated close 

to one another light availability is an important and a potentially yield-limiting factor. Species dominance 

may become a problem in the future for mixed hedges not pruned. 

4.4.4 Seed yield comparison between genotypes and cropping systems 

While the experiments might be considered to have a strong management emphasis, the fact that limited 

jatropha breeding development has been done raises questions relating to natural variation. Currently there 

are no elite jatropha genotypes available for planting as breeding research is still in the early stages. 

Developmentally the jatropha are still wildlings. 

 

In the four-year-old monoculture and intercropping, a single genotype, IP-1M, an improved population (IP) 

of a first selection (1) from Muktiharjo (M), Central Java (Hasnam and Hartati, 2006) was used. This 

planting material has vigorous vegetative growth and may be more suited to revegetation and remedial 

purposes (pers. comm. Purwati). Hedge planting material was a Sumbawa provenance and different to that 

used for monoculture and intercropping. All hedge planting materials were propagated from seed and not 

cuttings which can mean that trees took longer to mature and produce seed. 

 

Seed yield from our two-year-old monoculture plantings on poor soils and grown without any additional 

inputs was 11 g per tree for pruned and 44 g per tree for non-pruned trees. These results are in line with a 

study of one-year-old IP-1M jatropha conducted by Retnowati and Surahman (2013) where in the first year, 

non-pruned jatropha planted at 2 m × 2 m produced 17 g per tree when planted on acid soils with addition of 

manure and fertiliser at Bogor in Indonesia. Yield response from other provenances varied significantly from 

7 g per tree to 68 g per tree (Retnowati and Surahman, 2013). Published yields in Indonesia for two-year-old 

monoculture plantings are consistently around 0.2 t ha-1 to 0.9 t ha-1 or 80 g per tree to 360 g per tree when 

planted at 2 m × 2 m (Purwati and Hariyono, 2008; Hariyadi et al., 2011; Slingerland et al., 2014). Claims of 

4 t ha-1 to 5 t ha-1 and up to 12 t ha-1 are consistent with mature plantings age five years or older (Openshaw, 

2000; Achten et al., 2008). 
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No hedge data are available for seed comparison; however, seed yield from a Sumbawa provenance in the 

first year monoculture planted at 2 m × 2 m and with manure and fertiliser applied was recorded at 220 g per 

tree to 340 g per tree (Santoso and Aryana, 2011). Iiyama et al. (2013) estimated jatropha hedge seed yield in 

Kenya at about 100 g per tree from trees of one to three-year-old, while GTZ (2009) observed in Kenya, 

hedges aged one to two years produced 2 g per tree to 36 g per tree. Henning (2001) estimated hedge seed 

yield in Mali at about 800 g m-1 year-1 with older pruned hedges producing about 200 g m-1 year-1. 

 

Our hedge studies produced much lower yields, ranging from 0.97 g m-1 to 1.69 g m-1 in hedges planted at 10 

cm and 30 cm respectively (Figure 4.4), and 0.46 g m-1 in monoculture hedges at 10 cm spacing and 0.14 g 

m-1 at 20 cm spacing in jatropha-gliricidia hedges (Figure 4.5). 

 

Although there were two hedge studies conducted at the same location, using the same planting material and 

treatments (75 cm height and planting distance of 10 cm), seed yield for the first hedge study was double that 

of the second. This result shows that in hedges, management may not be the dominant factor responsible for 

seed yield. Possibly, any genotype plasticity within jatropha, either as individuals, or collectively has a 

greater contribution to seed yield. 

 

The smaller yield in our hedges compared with the literature may be due to differences in planting material 

and age, pruning heights, weeding practices, soil moisture, nutrient availability, and climatic conditions 

(Iiyama et al., 2013; Singh et al., 2013). In terms of yield our hedges were relatively young at one-year-old, 

and when combined with different pruning heights and different soil and climatic conditions, these may have 

been contributing factors. 

 

Overall our yield is situated at a lower end of the scale in comparison with the global yield and expectations 

(Achten et al., 2008; Trabucco et al., 2010; Van Eijck et al., 2014a). Global yield results such as those 

reported by Van Eijck et al. (2014a), by Achten et al. (2008), and by Trabucco et al. (2010) also showed 

extensive variation, from (0.003 to 8) t ha-1, (0.1 to 12) t ha-1 year-1, and (0.2 to 4) t ha-1 year-1 respectively. 

 

Future jatropha breeding research is crucial and will need to concentrate on developing a balance between 

vegetative and generative growth. Jatropha seems to come in many different phenotypes (Sunil et al., 2013) 

showing a large amount of developmental plasticity (Yi et al., 2010; Osorio et al., 2014). Hence breeding for 

hedges, intercropping, and monoculture cropping systems may need to identify different phenotypes or target 

genotype-pruning combinations; keeping in mind above and belowground inter and intraspecies competition. 

Furthermore genotypes to be used for revegetation, remediation, firewood or fencing might require different 

traits than genotypes for seed yield. 
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4.5 Conclusion 

Seed yield was highest in monoculture, intercropping, and hedges in that order. Overall results indicate that 

seed yield across the three cropping systems can be determined by plant height and numbers of productive 

twig/branch, although number of inflorescence clusters per productive twig may be more important. 

Unexpectedly the pruning technique of cutting all branches back to 75 cm aboveground reduced yields. This 

effect may be due to interactions between genotype, planting age, and soil water and nutrient availability. 

Available soil water and the addition of soil nutrients will favour seed yield as observed for pruned trees in 

the intercropping experiment. If hedges are to be considered as viable options for jatropha seed production, 

growers will need to consider lower planting densities and increased nutrient management. 
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Abstract 

Annual crops inter-planted during the early stages of tree (or shrub) plantations interact through direct 

competition for below and aboveground resources, and indirectly by modification of soil conditions and 

microclimate, combining to produce a net interaction effect on the crop, as well as tree. I explored the net 

effects and a number of interaction components by comparing a jatropha-maize intercropping system with 

maize monoculture over two growing seasons, with and without mulch and with and without polythene root 

barriers to reduce belowground competition. Root barriers had variable effects on maize yield. Belowground 

competition was estimated at -15% of control crop yield for first season (Season 1) which experienced high 

rainfall and 36% for the second season (Season 2) which had adequate rainfall. Aboveground competition 

was -20 % for Season 1 and -29 % for Season 2. The results showed competition to be dependent on soil 

fertility. Fertility minus below or aboveground competition allowed for two interaction factors to be 

calculated. Interaction 1 produced positive values for Season 1 (32 %) and Season 2 (51 %), however 

Interaction 2 produced a positive value for Season 1 (28 %) and a negative value for Season 2 (-14 %). 

Jatropha prunings applied as mulch were effective in supplying N to the maize crop, equivalent to an 

application of 21 kg N ha-1. Yield for the monoculture maize treatments increased with mulch (30 %) and 

with inorganic N at 45 kg ha-1 (58 %), 90 kg ha-1 (123 %) and 135 kg ha-1 (156 %) relative to the control. 

Further understanding of the dynamics of these interactions using plant modelling is required to assess long-

term productivity. 

 

Keywords: Competition - Fertility - Interaction - Leaf mulch - Root barrier 
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5.1 Introduction 

Jatropha has been promoted in many countries as a biofuel crop (Openshaw, 2000; Wahl et al., 2009; Bailis 

and McCarthy, 2011), including Indonesia (Vel et al., 2013). While the popularity of jatropha in Indonesia 

has risen and fallen (Vel et al., 2013) many plantings such as those in Gunungkidul - Yogyakarta (Gunawan, 

2014), in Sikka - East Nusa Tenggara (Van Rooijen, 2014a), and in Sumbawa - West Nusa Tenggara, 

Indonesia have been abandoned. 

 

Jatropha plantings are currently unprofitable primarily due to a combination of poor yields and commodity 

prices, further compounded by resource limitations, poor soil fertility, and accessibility (GTZ, 2009; Wahl et 

al., 2009; Iiyama et al., 2013). Some farmers in Sikka and Sumbawa were observed to continue maintaining 

their jatropha, utilising the pruned leaves as mulch for annual crops such as peanut (Arachis hypogaea), rice 

(Oryza sativa), and maize. This suggests that jatropha may have some intercropping potential, yet little 

published research has examined this. 

 

Intercropping involves complex tree, crop, and soil interactions (Kang and Wilson, 1987; Van Noordwijk et 

al., 1998) where soil fertility and competition are important factors for maximising net returns (Singh et al., 

1989; Ong et al., 1991; Jose et al., 2000). A basic equation relates the total yield (Ytot) to the area fraction 

allocated to the crop (AC), the yield of crop and tree when grown alone (YC and YT, respectively). UTC is a 

weighing factor for the utility of the tree yield relative to that of the crops, and ITC and ICT are two interaction 

terms respectively for effects of tree (T) on crop (C), and vice-versa (Equation 5.1). 

 

               Equation 5.1 

 

Ong (1995, 1996) developed an equation to determine this tree-crop interaction (Equation 5.2). For both the 

TC and CT interactions, the interaction term (I) can be interpreted as: 

 

 and              Equation 5. 2 

 

ITC and ICT are the interaction effects, measured in the units of crop and tree yield respectively, proportional 

to the area planted with the tree or crop respectively. FTC and FCT are the total positive effects of tree on crop 

yield (and vice-versa, respectively) through soil fertility improvement. The competition terms (CTC and CCT) 

represent negative yield effects resulting from reduced resource access. The MiTC and MiCT terms represent 

yield effects through modification of microclimate. For example lower maximum soil temperature and 

reduced soil evaporation can influence resource competition. 

 

Soil fertility improvement is a facilitation effect that integrates multiple interactions of water and nutrient 

uptake (Magcale-Macandog and Abucay, 2007) with recycling of biomass as surface mulch. Soil nutrient 
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availability can be increased through inorganic fertilisers, the use of which will depend on uptake efficiency 

and input/output price ratio (Kang and Wilson, 1987; Mupangwa et al., 2012; Castellanos-Navarrete et al., 

2015). Mulch is a feasible alternative that can provide significant benefits for soil fertility (Kang et al., 

1990). Mulch high in N and low in lignin and polyphenols release nutrients rapidly, whereas mulch low in N 

and high in lignin and polyphenol release nutrients more slowly, or can even immobilise them (Palm, 1995), 

stabilising the soil surface for a longer period of time (Palm et al., 2001). 

 

Interspecific competition can combine to create unique, complex and competing interactions by restricting 

nutrient, water, and light capture for each of the components measured (Ong, 1995; Sanchez, 1995; Van 

Noordwijk et al., 1998). Managing tree and crop aboveground competition through plant spacing and/or 

pruning is easier than managing belowground competition. Negative effects on plant growth from 

belowground competition for water and nutrients can be reduced by increasing nutrient and water 

availability, and by tree root pruning and/or the installation of vertical polythene root barriers (Ong et al., 

1991; Ong et al., 1996; Jose et al., 2000). 

 

Understanding above and belowground competition in relation to soil fertility, and the direction and 

magnitude of tree and crop interactions is crucial to developing a feasible intercropping system. While these 

aspects have not been adequately explored in jatropha intercropping systems, some intercropping 

experiments have been reported (Sharma and Rana, 2014; Da Silva Neto et al., 2015). Maize is the 

predominant annual cash crop preferred by farmers in our experimental location (Gunungkidul) and formed 

the basis of our study. 

 

The aim of this study was to explore the interactions of jatropha-maize intercropping focusing on maize 

yield. The two primary objectives were: 

 

1. To determine yield response of the maize crop component in a jatropha-maize intercropping system. 

2. To determine fertility, competition, and interaction effects of jatropha leaf mulch and polythene root 

barriers on maize yield in jatropha-maize intercropping. 

5.2 Materials and methods 

5.2.1 Study site and conditions 

The study was conducted in Gunungkidul Regency of Special Province Yogyakarta (8° 0’ N, 110° 34’ E, 185 

m ASL) during the 2012 and 2013 growing seasons. Gunungkidul has an equatorial rainforest climate with 

rainfall occurring predominantly from November to April and dry periods from June to August or 

September. Total annual rainfall in 2012 was 1,400 mm, distributed over 78 rain days, while total annual 

rainfall in 2013 was 2,160 mm, distributed over 131 rain days. Mean annual temperature and relative 

humidity in 2012 and 2013 were 27.4 °C and 72 % and 27.9 °C and 79 % respectively. 
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The soils, around 40 cm deep with limestone beneath are Mollisols with texture varying from clay, silty clay 

to silty clay loam, with poor drainage. Top soil is 0 cm to 10 cm while soil pH (1: 5 soil : water) was 7.7 with 

~0.9 % organic carbon (Walkley-Black method). Total nitrogen (Kjeldahl method), phosphorus (Olsen 

method), and potassium (ammonium acetate pH 7) were 0.5 mg kg-1, 13.8 mg kg-1 and 0.2 cmol (+) kg-1 

respectively. 

5.2.2 Experimental design  

The experiment was a randomised complete block design with three replicate blocks, each consisting of nine 

treatments and established in an existing four-year-old (seedling) jatropha plantation (Table 5.1). 

 

Table 5.1 Experimental treatments. 

No. Code Treatment details 

1 WmWrb maize – jatropha intercropping With mulch and With root barrier 

2 NmWrb maize – jatropha intercropping with No mulch and With root barrier 

3 WmNrb maize – jatropha intercropping With mulch and No root barrier 

4 NmNrb maize – jatropha intercropping with No mulch and No root barrier 

5 CO monoculture maize Control 

6 Cm monoculture maize with jatropha leaf mulch 

7 45N monoculture maize with N applied at 45 kg ha-1 (33 % of the recommended rate) 

8 90N monoculture maize with N applied at 90 kg ha-1 (66 % of the recommended rate) 

9 135N monoculture maize with N applied at 135 kg ha-1 (100 % of the recommended rate) 

 

Using data from the four maize monoculture treatments (CO, 45N, 90N, and 135N) an N response curve was 

calculated. Treatments WmWrb, WmNrb, NmWrb, NmNrb were used to determine fertility (FTC) and 

belowground competition (CTC, B) effects, while treatments WmWrb, NmWrb, Mulch, and CO (Control) were 

used to determine aboveground competition and microclimate effects (CTC, A + MiTC). FTC, CTC, B, and CTC, A 

+ MiTC were used to generate the interaction (I) effects as shown in Table 5.2 and Table 5.3. 

 

FTC (further described as F) is the measure of the change in maize yield in response to the application of 

mulch in the intercropping where the smaller the positive value the greater is the fertility effect. Competition 

is the measure of change in maize yield in response to the installation of 400 μm polythene root barriers. 

Competition normally involves a negative value, while a zero value indicates a balance or neutral effect. A 

positive effect would indicate a degree of complementarity; however, the separation between 

complementarity and facilitation will be difficult; as the focus is on the net effect rather than the resource 

access. 
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Table 5.2 Combination treatments for Fertility (FTC), above and belowground Competition (CTC, B and CTC, 

A,) and Microclimate (MiTC) effects for the jatropha-maize intercropping and maize monoculture. 

Treatment FTC CTC, B CTC, A MiTC 

With mulch With root barrier (WmWrb) + - + + 

No mulch With root barrier (NmWrb) - - + + 

With mulch No root barrier (WmNrb) + + + + 

No mulch No root barrier (NmNrb) - + + + 

Monoculture planting with mulch (Cm) + - - - 

Monoculture (Control) (CO) - - - - 

Note: (+) indicates available fertility or competition effects, while (-) sign indicates no fertility or 

competition effects. 

 

Two competition responses, CTC, B (further described as CB) and CTC, A + MiTC (further described as CA) were 

calculated. CB is the net effect of belowground competition of tree and crop with and without root barriers 

(with mulch at high soil fertility level and without mulch at low soil fertility level). CA calculated 

aboveground competition and microclimate effect in monoculture and intercropping (with mulch at greater 

soil fertility level and without mulch at low soil fertility level). Interaction is the measure of the change that 

has occurred in yield taking into account F and C. F in combination with CB or CA allowed the two 

interaction results, I1 and I2 to be were calculated. A positive interaction indicates that F > C and a net 

complementarity effect advantageous for crop production. A negative interaction indicates that F < C and a 

net competition effect that is disadvantageous (Ong et al., 1996; Van Noordwijk et al., 1996; Van Noordwijk 

et al., 1998). The greater the interaction value the greater is the interaction effect, with a zero value indicating 

no interaction. 

 

Table 5.3 Equations used to calculate fertility, competition, and interaction effects on maize yield over two 

planting seasons. 

Component Calculation 

Fertility (F) ((WmWrb + WmNrb) - (NmWrb + NmNrb)) / 2 

Competition 1 (CB) ((WmWrb + NmWrb) - (WmNrb + NmNrb)) / 2 

Competition 2 (CA) ((WmWrb + NmWrb) - (Cm + CO)) / 2 

Interaction 1 (I1) I (1) = F + CB 

Interaction 2 (I2) I (2) = F + CA 

 

Both the monoculture and intercropping plots had two maize BISI-2 hybrid seeds planted per hole at a 

spacing of 0.25 m × 0.75 m, with the less vigorous seedling thinned out after two weeks. The maize 

monoculture plot was 3 m × 4.5 m, while for jatropha-maize intercropping the maize plot size was according 

to the jatropha planting spacing. All maize plants received 72 kg ha-1 of P and 120 kg ha-1 of K 
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(recommended doses) while N was applied according to the treatments. P and K fertilisers were applied 7 

days after planting, while N fertiliser treatments were applied as split applications, 7 and 35 days after 

planting. Maize is normally fertilised every year therefore the treatments are practical and relevant, as any 

likely residual effect of N fertiliser in the humid climate of the site studied would be small. No assessment 

was made of the cumulative effects on jatropha yield. During the growing period, all plots were hand weeded 

monthly. Rust was controlled using Mancozeb as a foliar spray (2 g L-1), while Diazinon was applied as a 

foliar spray (2 g L-1) to control armyworm (Spodoptera sp.). 

 

Jatropha planting material was seed propagated IP-1M and planted aged three months at 2 m × 2 m. No 

agricultural inputs were applied to the jatropha and grass was harvested from the jatropha plots by local 

farmers for cattle feed. At the start of the first wet season all jatropha were pruned 75 cm aboveground and 

treated with Mancozeb at 2 g L-1, and all cuts sealed with white, waterproof paint. To prevent Fusarium or 

Phythopthora infections all jatropha received 200 g per plant Trichoderma applied to the soil in split 

applications, while maize received 10 g per plant of Trichoderma. Trichoderma applications were to a depth 

of 15 cm under the jatropha drip line and to 10 cm in the maize planting. 

 

Jatropha plot size of 5 m × 12 m had three rows of seven trees with three rows of maize planted between 

(Figure 5.1). The root barrier treatment used a clear polythene sheet (400 μm) installed in a trench 

approximately 14 m long, 40 cm deep, 20 cm wide and positioned 50 cm from the jatropha row on both 

alleys, and installed prior to jatropha pruning and maize planting. 

 

 
Figure 5.1 Schematic drawing of jatropha - maize intercropping showing the location of the root barrier 

treatments. 

 

0 – 50        50 - 100                                                200 - 250     250 - 300                                                400 - 450     450 - 500
cm            cm cm                cm cm                cm  

Polythene plastic root barrierPolythene plastic root barrier
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Polythene sheeting was retained 5 cm above the soil surface to prevent the spread of the roots over the top of 

the barrier and the trenches back-filled with the subsoil returned first followed by top soil. 

 

Air-dried jatropha leaf prunings (leaflets with petioles) equivalent to 3.5 t ha-1 were incorporated into the top 

15 cm of soil using hand hoes two weeks before maize planting. Application was according to the treatment 

and in amounts proportional to the size of the experimental plots. Table 5.4 provides an analysis of the 

nutrient status of the jatropha leaf mulch. 

 

Table 5.4 Nutrient composition of jatropha leaf applied as mulch. 
% C-organic C:N N Lg Pp Lg:N (Lg+Pp):N P K C Mg Na S 

Average 40.91 15.70 2.61 15.84 3.71 4.45 7.50 0.18 1.14 4.04 0.79 0.34 0.05 

SD 1.59 0.80 0.24 1.89 0.89 1.21 0.05 0.10 0.78 0.76 0.41 0.11 0.01 

Note: % analysis is based on mg per 1 g dry weight; n=3, Lg = Lignin, Pp = Polyphenol; SD= standard 

deviation 

 

The experiment used the same plots and treatments over two planting seasons, the first starting on 21st 

November 2012, and finishing on 3rd March 2013; with the second starting on 23rd March 2013 and finishing 

2nd July 2013. 

5.3 Maize measurements 

Starting three weeks after planting (WAP) three replicates, two in the outer rows and one in the centre row, 

were measured for height, stem diameter at 10 cm high, and number of open leaves. Three random samples 

taken from each treatment at 4, 8, and 12 WAP provided data on LAI, root length density (RLD), and root, 

shoot, and total biomass. Maize yield for the intercropping and monoculture was calculated. Maize cobs 

were manually separated from the stover and sun-dried before placing in netting bags for threshing. After 

threshing, grain moisture content was determined and grain weight recorded at 12 % to 13 % moisture 

content. Dried stover weight determined HI. 

 

Maize N uptake at harvest was determined from three random samples of grain and stover taken from the 

monoculture treatments. Grain and stover samples were ground separately and passed through 1 mm mesh 

sieve for N analysis (Kjeldahl method). Total maize N uptake was determined by multiplying N 

concentration by the total dry biomass. Yield (dry grain) N uptake was determined by multiplying grain N 

concentration by yield. N recovery was calculated using Equation 5.3 from Mafongoya and Nair (1997). 

 

              Equation 5.3 
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5.4 Data analysis and statistics 

All data tested normal and were log-transformed (log x +1) prior to analysis. All results were back-

transformed to improve analysis description. Maize yield response to applied N was determined by fitting N 

application rates and maize yield for control, 45N, 90N, and 135N with a quadratic function (Van Raij and 

Cantarella, 1996; Kimetu et al., 2004). The N equivalent for mulch was determined using Equations 5.4 and 

5.5. 

 

                   Equation 5.4 

 

                   Equation 5.5 

 

Where Y is maize yield, X is N application rate, while a (quadratic coefficient), b (linear coefficient), and c 

(intercept) are constants obtained from the quadratic equation of the response curve. By replacing Equation 

5.4 with Ymax and Xmax (Equation 5.6) maximum maize yield and rate of N application, respectively can be 

determined. 

 

                    Equation 5.6 

 

Data were analysed using SAS 9.3 (SAS Institute Inc., Cary, NC, USA). Field data for grain yield and HI 

were analysed using the PROC MIXED and repeated measurement procedures (Littell et al., 2006) where 

sample date was treated as a non-random variable over time. Mean differences (P < 0.05) were determined 

using the Tukey’s test. Fertility effects, competition, and interactions were determined from contrasting 

means. 

5.4.1 Results 

A total of 1,182 mm rain fell over 62 rain days for Season 1 and 575 mm over 42 rain days for Season 2 

(Figure 5.2). 
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Figure 5.2 Cumulative rainfall distribution for the two planting seasons of 100 days and showing rainfall at 

4, 8 and 12 weeks after planting (WAP). 

 

Season 1 had twice the total rainfall of Season 2 although Season 2 had proportionally more rain days. 

Cumulative rainfall during the two seasons was similar at 4 WAP, although there was a slightly greater 

rainfall in Season 1. Cumulative rainfall at 8 WAP and 12 WAP in Season 1 were approximately double in 

Season 2. 

5.4.2 Maize yield response 

Table 5.5 shows maize yield and HI for Season 1 and Season 2. There were significant season and treatment 

interactions for grain yield with all treatments (P < 0.01) showing a 59 % increase in grain yield from Season 

1 to season 2, and a clear pattern of increasing yield with increasing N application rates. The exception was 

for mulch, which had a greater addition of N than the control, although yield was less in Season 1. Overall 

intercropping treatments produced 21 % greater and 13 % lower yields than the control in Season 1 and 2 

respectively. Yield for treatments with mulch in Seasons 1 and 2 were not significantly different to the 

control, irrespective of a root barrier. However, the yield increases observed between Season 1 and Season 2 

is noteworthy. Treatment WmWrb increased by 35 %, NmWrb by 188 %, NmNrb by 8 %, while WmNrb 

decreased by 8 %. A comparison of average yield for intercropping with the control over two seasons 

showed that treatment WmWrb increased by 7 %, while NmWrb, NmNrb and WmNrb decreased by 23 %, 

37 %, and 9 % respectively. 

 

Furthermore, the addition of mulch and root barrier treatments resulted in larger yields in the maize centre-

rows, on average 36 % greater than the edge-rows. In treatments WmWrb and NmWrb, yield in the edge-

rows did not increase as expected. Yield for the centre-rows was consistently 42 to 45 % greater than for the 

edge-rows. When no root barrier was present, yield variation was greater (16 % to 31 %). 
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Table 5.5 Maize grain yield and harvest index for intercropping and monoculture (control) plantings over the 

two planting seasons. 

Treatment 
Grain yield (t ha-1) Harvest Index 

Season 1 Season 2 Mean Season 1 Season 2 Mean 

With mulch With root barrier (WmWrb) 1.52 efg 2.06 de 1.82 de 0.31 defg 0.31 defg 0.31 cd 

No mulch With root barrier (NmWrb) 0.65 h 1.88 def 1.30 ef 0.26 g 0.29 fg 0.28 d 

With mulch No root barrier (WmNrb) 1.60 efg 1.47 efgh 1.54 ef 0.36 abcdef 0.38 abc 0.37 ab 

No mulch No root barrier (NmNrb) 1.03 gh 1.11 fgh 1.07 f 0.34 abcdef 0.39 ab 0.37 ab 

Control (CO) 1.52 efg 1.87 defg 1.70 de 0.32 cdefg 0.32 cdefg 0.32 cd 

Mulch (Cm) 1.25 efgh 3.15 bc 2.20 cd 0.31 defg 0.32 cdefg 0.32 cd 

N applied at 45 kg ha-1 (45N) 1.81 efg 3.54 b 2.68 c 0.29 fg 0.33 bcdefg 0.31 cd 

N applied at 90 kg ha-1 (90N) 2.67 cd 4.90 a 3.79 b 0.30 efg 0.37 abcd 0.34 bc 

N applied at 135 kg ha-1 (135N) 3.68 b 5.01 a 4.35 a 0.37 abcde 0.40 a 0.38 a 

Mean  1.75 b 2.79 a 0.32 b 0.35 a 

Note: Values followed by the same letter within columns and rows of each parameter are not significantly 

different (P < 0.05). 

 

Monoculture yields showed significant and proportional increases from Season 1 to Season 2. Overall yields 

were 79 % and 140 % greater than the control in Seasons 1 and 2 respectively. Average monoculture yields 

relative to the control showed that mulch increased yield by 30 %, 45N by 58 %, 90N by 123 %, and 135N 

by 156 %. When comparing the differences between Season 1 and Season 2, yield for the control increased 

by 23 %, mulch by 151 %, 45N by 96 %, 90N by 83 %, and 135N by 36 %. 

 

Average HI was 9 % greater in Season 2 than in Season 1. Overall, there was little difference in the results 

between the intercropping and monoculture treatments and between seasons. This is because the interaction 

between seasons and treatments had a probability value close to the cut-off point of 5 % (P < 0.048), 

although still significant. Increases in N application rate resulted in increases in HI with largest value 

observed in treatment 135N (mean 0.38). 

5.4.3 Fertility, competition, and interactions effects jatropha leaf mulch and polythene root barriers 

on maize yield in jatropha - maize intercropping. 

Table 5.6 shows the combinations of fertility, competition, and interactions for the intercropping treatments 

and the monoculture control and mulch treatments. 

 

 

 

 

 

 

 



Chapter 5 

92 

Table 5.6 The effect of fertility, competition, and interaction on maize yield over two planting seasons. 

Component 

Season 1 Season 2 

Treatment 

 response 
% of control 

Treatment 

 response 
% of control 

Fertility (F) 0.72 47 0.27 14 

Competition 1 (CB) -0.23 -15 0.68 36 

Competition 2 (CA) -0.30 -20 -0.54 -29 

Interaction 1 (I1) 0.49 32 0.95 51 

Interaction 2 (I2) 0.42 28 -0.27 -14 

Note: Maize monoculture control grain yield; Season 1 = 1.52 t ha-1 and Season 2 = 1.87 t ha-1 

 

5.4.4 Fertility 

The fertility response of F with mulch was greater in Season 1 than in Season 2 with yield for Season 1 

calculated at 47 % of the control and 14 % for Season 2. The addition of mulch in the monoculture treatment 

resulted in an average yield of 2.20 t ha-1 for Season 1 and Season 2 compared with the control at 1.70 t ha-1. 

 

A quadratic N response equation developed from the results of the control, 45N, 90N, and 135N, and from 

the average maize grain yield (Figure 5.3A) provided insight into the amount of N contributed by the mulch.  

 

 
Figure 5.3 A three-quadrant diagram of maize response to N fertiliser applications. Quadrant (A) shows 

average maize yield in response to N application rate, quadrant (B) represents average yield per unit of N 

taken up by maize, and quadrant (C) shows the relationship between N uptake and N application rate. 
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By inserting the average mulch yield of 2.20 t ha-1 over two planting seasons into the quadratic equation it 

was determined that mulch contributed the equivalence of 21 kg ha-1 N. Extrapolation analysis estimates a 

theoretical maximum yield of 5.3 t ha-1 with an N application rate of 265 kg ha-1 (265N). 

 

Figure 5.3B shows average N uptake in response to average maize yield. The increase is in line with 

increased yield and N level. Average N uptake for the control was 22 kg ha-1, mulch was 33 kg ha-1, 45N was 

36 kg ha-1, 90N was 46 kg ha-1, 135N was 60 kg ha-1, and for theoretical 265N it was 91 kg ha-1. Total N 

uptake for total biomass across the different N treatments was about 40% greater than yield N uptake. Figure 

5.3C shows average maize N uptake in response to different N application rates. The slope of the N uptake 

curve represents N recovery. N recovery for mulch was 56 % followed by 45N at 32 % with 90N and 135N 

at 28 %. N recovery for 265N was the lowest at 22 %. 

5.4.5 Competition 

The effect of belowground competition for CB was -15 % in Season 1 and 36 % in Season 2 when compared 

with the control. Smaller yield combinations for the root barrier treatments caused the negative value 

observed in Season 1. For CA the effect of aboveground competition was -20 % in Season 1 and -29 % in 

Season 2. Greater aboveground competition in Season 2 was a consequence of jatropha pruning in Season 1 

but not in Season 2. 

5.4.6 Interaction 

Interaction effects used the F and C intercropping differences. For I1 (F + CB) there was a 157 % increase in 

yield from Season 1 (32 %) to Season 2 (51 %). For I2 (F + CA) there was a decrease in yield from Season 1 

(28 %) to Season 2 (-14 %). The negative value for Season 2 was due to greater aboveground competition 

where CA was greater than F. 

5.5 Discussion 

5.5.1 Maize yield response 

In this study, maize yields were different in Season 1 and Season 2, characterised by two distinct growth 

environments resulting from differences in cumulative rainfall (Figure 5.2). The optimum rainfall for maize 

growth is between 500 mm to 800 mm (Steduto et al., 2012). In Season 1 high rainfall it is likely that a lack 

of aeration limited root growth, allowing the maize to increase root growth in the upper soil layers, including 

the development of nodal or adventitious roots (Lizaso and Ritchie, 1997; Lizaso et al., 2001). High rainfall 

also accelerates mulch decomposition (Swift et al., 1979; Palm, 1995; Mugendi and Nair, 1996). As rainfall 

increases so does the potential for losses in available N through leaching and denitrification (Meyer et al., 

1987). 

 

Our results (analysis not shown) indicate that the effect of high rainfall on maize is dependent on the growth 

stage (i.e. 4 WAP to 12 WAP) and N rates (i.e. low N in intercropping treatments, control, and mulch; 
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greater N in 45N to 135N in monoculture). Maize is more susceptible to water and nutrient stress during the 

early vegetative development or before tasseling (from 4 WAP to 8 WAP) than during the late vegetative 

stage (from 8 WAP to 12 WAP) (Zaidi et al., 2004). The timing and extent of the stress influences growth 

and can have dramatic effects on biomass and grain yield (Mukhtar et al., 1990; Pandey et al., 2000; Zaidi et 

al., 2004) as silking can be reduced up to 50 %, and may even result in barren plants (Zaidi et al., 2008). 

 

At low N rates, WmWrb was expected to perform the best, and while the average was greater than the 

control, the differences were only small (Table 5.5). This shows that while jatropha mulch provides a 

positive benefit, it is limited. The poor yield for NmWrb (0.65 t ha-1) in Season 1 is particularly interesting, 

especially given that yield in Season 2 was similar to the control. If we compare the response observed for 

NmWrb with WmWrb (1.52 t ha-1) it becomes apparent that the only difference was the mulch. The poor 

yield for NmWrb (also had the lowest LAI) may be the result of the Season 1 high rainfall and the root 

barrier causing impeded drainage. It is possible that mulch (WmWrb) made a positive contribution by 

helping to alleviate water logging. Soils with mulch are known to effectively store rainfall two times greater 

than soils with no mulch treatment (Unger, 1978), especially in heavy textured soils (Lal, 1974; Ji and 

Unger, 2001). 

 

If we look at treatments WmNrb (1.60 t ha-1) and NmNrb (1.03 t ha-1) we again see a positive mulch effect. 

The next logical step was to eliminate the effect of the polythene root barrier, achieved by assessing 

treatments WmWrb (1.52 t ha-1) and WmNrb (1.60 t ha-1). The results are not different so I assume that 

jatropha mulch incorporated into the soil was beneficial during the periods of high rainfall in Season 1. A 

small exception is apparent when comparing the control (1.52 t ha-1) and monoculture mulch (1.25 t ha-1) 

treatments. 

 

Studies have shown that mulch does not always increase maize yield. Yield reductions in response to 

applications of mulch may be caused by a decrease in N fertility effect (Unger, 1986), often compounded by 

cool weather or periods of high rainfall (Wicks et al., 1994). The effect of mulch on soil moisture 

conservation and evaporation is often variable and depends on the soil characteristics, evaporative demand 

and the frequency and quantity of rainfall (Lal, 1974; Tolk et al., 1999). Mulch applied to the soil can reduce 

soil evaporation by shading and the creation of a boundary layer; however the thickness of the mulch will 

determine the rate of soil drying (Steiner, 1989). 

 

As for root barrier treatments, they were effective in removing the jatropha-maize belowground competition; 

however, the root barrier effectively reduces the soil volume available for the maize edge rows by limiting 

root development on one side. Maize in the centre-rows had no such limitations. In essence, mulch and root 

barriers provided an intercropping yield advantage. 
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HI was expected to increase with increasing applications of N (Moser et al., 2006); but our study showed HI 

to be variable (Table 5.5). One explanation is that HI is influenced by management, and environment (Hay, 

1995; Hay and Gilbert, 2001) as well as N uptake and use efficiency (Sinclair, 1998; Fageria et al., 2005; 

Moser et al., 2006). In the tropics, HI is usually lower than in temperate areas, which is usually above 0.50 

(Hay and Gilbert, 2001; Moser et al., 2006). Efendi and Suwardi (2010) used a maize hybrid similar to that 

used in our study to investigate the effects of increased planting density and N application rates. In their 

study, the control had a HI around 0.30, while N at 150 kg ha-1 and 225 kg ha-1 resulted in HI of 0.37 and 

0.39 respectively. In general, our results are consistent with their findings however, the lower HI (0.28) 

associated with our hybrid was due to the poor response by treatment NmWrb in Season 1. 

5.5.2 Fertility, competition, and interaction effects of jatropha leaf mulch and polythene root barriers 

on maize yield in jatropha - maize intercropping 

The small fertility response for Season 1 and Season 2 (high and optimum rainfall respectively) are 

interesting and consistent with an increase in maize yield from Season 1 to Season 2. According to Van 

Noordwijk et al. (1998), the fertility effect will be small in a soil that does not have nutrient limitations. One 

of the difficulties however might be in determining if an improved fertility effect is due to nutrients, or to 

improved soil water holding capacity. In essence, both are facilitation effects, but to be able to differentiate 

would be an advantage. The fact that F improved from Season 1 to Season 2 may be a result associated with 

greater mineralisation of N and possibly less leaching. Mulch mineralisation is dependent on the litter quality 

(Swift et al., 1979; Handayanto and Giller, 1994; Palm, 1995; Mafongoya et al., 1997) and on the method of 

application (Jama and Nair, 1996; Mafongoya and Nair, 1997). Using the tree decision flow chart developed 

by Palm et al. (1997), jatropha leaf mulch can be categorised as a high quality organic resource with 

immediate mineralisation potential. This is because the N is > 26 g kg-1 and lignin + polyphenol: N ratio < 

10, although the lignin and polyphenol content are at the upper limits. 

 

In conjunction with mineralisation it is important to ensure nutrient demand synchronisation is achieved to 

prevent periods of temporary shortage or surplus (Meyer et al., 1987; Mafongoya et al., 1997). The reduction 

in F values between Season 1 and Season 2 may also indicate improved synchronisation of N mineralisation 

and crop uptake. The high N recovery from the monoculture mulch further supports our results. 

 

The timing for the incorporation of the dry leaf mulch into the soil was based on work by Abugre et al. 

(2011) who reported that in Ghana 50 % decomposition of jatropha leaf litter was obtained after 25 days in 

an open canopy and 32 days in a closed canopy. In total 97 % to 99 % of leaf litter had decomposed after 120 

days, which was consistent with the maize nutrient requirements. Based on leaf analysis, mulch applied at 

3.5 t ha-1 was determined as an N equivalent of 91 kg ha-1, P equivalent of 6.2 kg ha-1, and K equivalent of 

39.8 kg ha-1 (Table 5.4). The analysis established that these rates were insufficient to meet the full maize 

nutrient requirements estimated at N 135 kg ha-1, P 72 kg ha-1, and K 120 kg ha-1. With the objective being to 
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determine the effect of the jatropha mulch in providing an inorganic source of N for the maize intercrop, an 

additional 72 kg ha-1 of P and 120 kg ha-1 of K was added to the mulch treatment. 

 

The three-quadrant diagram in Figure 5.3 (Van Keulen, 1982; De Wit, 1992) represents various N 

relationships with application rate, maize yield and uptake. The high rainfall in Season 1 was responsible for 

the positive quadratic coefficient generated in Figure 5.3A. Effectively mulch provides a source of N 

equivalent to 21 kg ha-1, and the maximum expected yield at 265 kg ha-1 N was 5.3 t ha-1. If a comparison is 

made between the yield for 135N (4.3 t ha-1) and the yield for 265N (5.3 t ha-1) then to increase maize yield 

by 22 % requires an additional 96 % N. 

 

Although no maize N content data was available to generate N uptake during the growing stage, harvest N 

uptake increased in line with increasing N application rate until 135N treatment. The N uptake of 22 kg ha-1 

for the control shows the inherent soil fertility. The N uptake from mulch application was 33 kg ha-1 and this 

value was greater than predicted mulch N equivalent of 21 kg ha-1. The difference (12 kg ha-1) may be due to 

the contribution of N mineralisation from soil and/or bias from using average yield in two seasons to 

generate the N response curve. N uptake at the theoretical maximum (265N) was 91 kg ha-1. Increases in N 

uptake associated with increasing application rates is a function of N demand, the result of rapid leaf area 

expansion and development of reproductive structures (Ciampitti and Vyn, 2012). This assumes that N 

availability for the roots is sufficient as N remobilisation between root and shoot are interconnected (Peng et 

al., 2010). 

 

Using N uptake differences between the control and increasing application rates (Figure 5.3B), N recovery 

was determined. N recovery decreased as N application rates increase. The high N recovery rate for the 

mulch treatment may be the result of rapid biomass decomposition and N mineralisation (Palm, 1995; 

Mafongoya and Nair, 1997). A high N recovery may also mean a degree of application synchrony with crop 

nutrient demand (Mafongoya and Nair, 1997). Moreover the addition of mulch prior to maize planting in 

Season 1 and 2 may have initiated a priming effect where soil N mineralisation was stimulated, allowing for 

increased maize N uptake in Season 2 (Hauck and Bremner, 1976; Jenkinson et al., 1985; Cadisch et al., 

1998). 

 

Lower N recovery as N increases may be due to immobilisation, denitrification, or leaching (Oikeh et al., 

2003). Interestingly, N recovery for 90N and 135N are similar which may indicate that 135N was in excess 

of maize requirements, or that more N was lost at 135N. The low N recovery by maize at high N applications 

may be due to asynchrony between the release of N and the demand of N by the crop, leading to high losses 

of N (Myers et al., 1994; Myers et al., 1997). When N uptake increased, maize yield increased proportionally 

(Figure 5.3C). When yield is extrapolated to a theoretical 265N application rate, yield is 5.2 t ha-1; however 

N recovery rate is 22 % lower than at 135N. Any decision to increase N from 135N to N265 to gain an extra 

20 % yield should take into account not only economic, but also N recovery. 



Resource competition between Jatropha curcas L. and maize when intercropped in Indonesia 

97 

The competition effects of CB and CA from Season 1 to Season 2 were different, although both experienced 

improved soil fertility associated responses. Potentially contributing factors were soil moisture and light 

competition effects. The positive CB value in Season 2 is likely due to an increase in F that resulted in 

complementarity. However, this does not mean that there was no belowground competition. In Season 1, the 

root barrier compounded the effect of the heavy rainfall and increased water logging. In Season 2, the rainfall 

was more optimal therefore; water logging was not an issue. 

 

Increases in CA for Season 2 were possibly due to increased competition for light, brought about by the effect 

of jatropha shading on maize. In Season 1, aboveground competition for light between maize and jatropha 

was low as the jatropha canopy was just starting to re-grow after pruning. Aboveground pruning is used to 

manage aboveground competition (Duguma et al., 1988), but is also effective in decreasing belowground 

competition for water and nutrients (Vanlauwe et al., 2002). In Season 2, no pruning was undertaken which 

meant that the jatropha canopy growth was well advanced and caused a more pronounced competition for 

light. Jatropha canopy shading can modify the microclimate effect on maize thereby affecting belowground 

competition. It was not possible with the equation used to discern aboveground competition from the 

microclimate effect. 

 

From the two competition effects, it is clear that increased resource availability in the form of N, P, K, and in 

improved soil water retention by the mulch resulted in a more vigorous maize vegetative growth. Increased 

demand for resources led to an increase in below and aboveground intercrop competition. This aspect 

highlights the fact that below and aboveground competition are inter-related, and that all resources must be 

in balance to maximise yield potential. 

 

For I1, the best result occurred in Season 2 when the F value was small and C had a positive value. A small F 

value indicates a soil that has no major nutrient limitations while positive C indicates reduced competition or 

increased complementarity. Ultimately the negative effects of light and soil moisture will always remain on 

the negative side of the equation (Van Noordwijk et al., 1998). For example, for I1 in Season 2 there were no 

water and nutrient limitations therefore there may have been some masking of the competition by the 

positive effect of soil nutrient and water availability. It seems that the net balance for I1 favours the soil 

fertility effect. 

 

I2 produced the best result when the F value was moderate and the C value was weakly negative. In this case, 

resource availability was sufficient to complement the combined system. The negative I2 interaction value 

resulted from increased soil fertility followed by increased aboveground competition. In general competition 

only becomes a problem if it affects the desired outcome, albeit commercial or otherwise (Van Noordwijk et 

al., 1996). The results from this study agree with Sanchez (1995) and Giller (2001) who state that for tree 

and crop intercropping to be successful, soil fertility should be good and rainfall adequate. 



Chapter 5 

98 

5.6 Conclusion 

Jatropha is a relatively new biofuel crop considered by many to have the potential to improve the 

socioeconomic lives of farmers. In Indonesia a combination of low yields and low commodity prices, further 

compounded by resource limitations, low soil fertility, and accessibility have led to many abandoned 

jatropha monoculture plantings. Alternatives to jatropha monocultures where farmers intercrop jatropha with 

maize offer distinct possibilities. 

 

Pruning was effective in managing aboveground competition however to determine if pruning on a yearly 

basis is optimal will require further research. Root pruning and root barriers effectively managed competition 

belowground however, they are expensive and time consuming to install. In the short-term jatropha leaf 

prunings incorporated into the maize intercrop soil as mulch provides a limited, but positive fertility effect. 

In the maize monoculture system, the addition of jatropha leaf mulch increased yield. Based on our results 

the regular use of jatropha mulch may result in yield increases comparable with 21 kg ha-1 of applied 

fertiliser N. Because above and belowground competition are inter-related the exploration and validation of a 

range of management scenarios to investigate net fertility and competition effects using modelling will be 

invaluable in refining jatropha-maize intercropping management guidelines. 
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Chapter 6 Trade-offs between Jatropha curcas L. and maize intercropping yield under 

different management scenarios using the WaNuLCAS model 
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Abstract 

Jatropha monoculture on poor soils is currently a high-risk venture due to market uncertainty and key 

knowledge gaps. Intercropping has been proposed as an alternative to monoculture; yet high yielding 

jatropha varieties are currently not available, and published information to optimise agronomic and 

management practices is limited so long-term outcomes are unknown. I used the WaNuLCAS (Water, 

Nutrient and Light Capture in Agroforestry System) model to evaluate relative jatropha and relative maize 

yields in response to different combinations of fertiliser, pruning, and planting density over a 20-year period. 

Intercropping performance was characterised by production possibility frontiers with attention to two 

specific points; jatropha yield when maize yield is maximised, and maize yield when jatropha yield is 

maximised. Fertiliser for the maize crops included mulch with P applied at 72 kg ha-1, mulch, N and P 

applied at 40 kg ha-1, and a no-fertiliser no-mulch (control). Pruning scenarios included no pruning, pruning 

every year and pruning alternate years. Planting density comprised 14 combinations generated from five 

intra-rows (1 m to 5 m) and four inter-row (2 m to 5 m) spacing. Our results show application of mulch with 

P applied at 72kg ha-1 gave the maximum yields for both jatropha and maize. Maximum jatropha relative 

yield of 250 % of a non-fertilised sole crop comparator plus a relative maize yield of 35 % was obtained 

from no pruning with a 2 m inter-row spacing when compared with monocultures. Maximum maize relative 

yield of 101 % and a jatropha relative yield of 62 % of the sole crop were obtained from pruning every year. 

Inter-row distance did not affect maize yield when jatropha was pruned each year. There is considerable 

scope for jatropha and maize intercropping, especially when fertiliser, pruning, and planting density 

management is considered. Different management practices can reduce jatropha and maize competition 

and/or enhance complementarity, responding to shifting farmer priorities within the production possibility 

frontier. 

 

Keywords: Competition - Complementarity - Fertiliser - Plant spacing - Production possibility frontier - 

Pruning
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6.1 Introduction 

Over the past ten years, jatropha has received much international attention as a potential biofuel crop. 

Jatropha has been promoted as a drought resistant perennial plant with a lifespan up to fifty years, and with 

the capability to grow on marginal soils with minimum management requirements and inputs (Brittaine and 

Lutaladio, 2010). For these reasons jatropha was assumed to have potential to bring socio-economic benefits 

without competing with food production, promote wasteland reclamation in tropical semi-arid regions, and 

possibly as a source of carbon credits (Van Eijck et al., 2014a). 

 

Much jatropha research has focused on commercial monoculture plantings (Achten et al., 2010a; Abhilash et 

al., 2011; Silitonga et al., 2011; Van Eijck et al., 2014a) with the expectation of good economic returns on 

investment. These returns have not been realised as actual yields are often < 0.5 t ha-1 to 2 t ha-1 as opposed 

to expected yields of 12 t ha-1 (Edrisi et al., 2015). Poor yields are further compounded by high capital inputs 

necessary for establishing and managing productive monocultures (Van Eijck et al., 2014a), especially on 

poor soils. Under optimal conditions jatropha can produce seed yields of 2 t ha-1 to 4 t ha-1, yet when planted 

on marginal land yields are often < 1 t ha-1 (Van Eijck et al., 2014a). The farm gate prices may not justify the 

fertiliser use needed to increase yield on degraded soils. 

 

The problem therefore is that for jatropha to be successful, growers may encroach on fertile lands or risk 

financial ruin (Achten et al., 2010a; Abhilash et al., 2011). Expansion into agriculture land is both 

economically and environmentally undesirable as it competes directly with food crop production (Achten et 

al., 2010a; Abhilash et al., 2011) and may negatively influence food security (Van Eijck et al., 2014a). In 

combination with the market uncertainty and knowledge gaps in agronomy, breeding, and management, 

monocultures are susceptible to increased pests and diseases (Achten et al., 2010a; Achten et al., 2014; Van 

Eijck et al., 2014a; Edrisi et al., 2015). But monocultures are not the only way that jatropha can be 

introduced into cropping systems. 

 

Agroforestry systems using jatropha intercropping have been proposed (Achten et al., 2010a; Abhilash et al., 

2011). Intercropping may have commercial potential, whilst providing farmers with a safe guard against 

harvest loss or poor performance of a single crop. Using the vacant land between the jatropha to grow annual 

crops such as rice, maize or groundnuts is an attractive and potentially viable proposition, especially while 

the jatropha are young or not yet bearing fruit (Achten et al., 2008; Wahl et al., 2009; Jingura, 2012), or 

when planted at wide spacing (Effendi et al., 2007). The intensification and diversification associated with 

intercropping may reduce pest and disease risk. For these reasons, species choice and spacing will be 

important (Mshandete, 2011). Intercropping is a common technique used when assessing new crops, at least 

before mechanisation favoured monocultures (Francis, 1989; Anders et al., 1994). In understanding such 

practices, agronomists have generally used sole crops as point of reference. 
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Although forms of jatropha intercropping are already common practice in Indonesia (Effendi et al., 2007), 

India (Singh et al., 2007; Sharma and Rana, 2014), and Africa (Iiyama et al., 2013; Minengu et al., 2015), 

published information and data related to optimal agronomic and management practices are limited. Little or 

no data on the long-term effects of jatropha intercropping is available (Brittaine and Lutaladio, 2010). 

 

Growing trees, shrubs or perennial plants in combination with annual crops can bring positive and negative 

effects (Rao et al., 1997). Positive interactions are improved soil fertility and structure through litter fall or 

mulching with prunings, recycling subsoil nutrients, reducing nutrient leaching and soil water evaporation, 

controlling soil erosion and improving infiltration rate, as well as reducing soil erosion. Negative interactions 

include increased competition for available water and nutrient resources and shading (Ong et al., 1991). 

Management must therefore bring these complex and competing factors into harmony if the system is to 

succeed (Nair, 1993). 

 

Analysis of intercropping performance commonly builds on the concept of replacement series through the 

Relative Yield Total (RYT) (De Wit and Van den Bergh, 1965). RYT uses the sum of yields for each species 

relative to its yield in monoculture in a comparison where total plant density is kept constant. When RYT = 1 

there is no yield advantage for intercropping, when RYT > 1 there is a degree of complementarity, and when 

RYT < 1 competition prevails (Ranganathan, 1992; Anders et al., 1994). A closely related concept to RYT is 

the Land Equivalent Ratio (LER) developed by Willey and Osiru (1972). LER is the area of land under 

monoculture that is required to produce the yields obtained in intercropping (Equation 6.1): 

 

              Equation 6.1 

 

LER > 1 indicates a net intercropping advantage in terms of land sparing by the mixed system. While RYT 

analysis is restricted to constant total plant density of plants of similar stature, LER can be used where plant 

density and management are optimised separately for the monocultures and the mixed systems. Results are 

usually presented as a bivariate diagram (Figure 6.1A) (Ranganathan, 1992; Ong, 1996). It is important that 

the monoculture (denominator) planting density for each species should be optimal and realistic for farmer 

practice (Mead and Willey, 1980; Francis, 1989; Ong, 1996). The production possibility frontier (PPF) 

analysis (Figure 6.1B) offers an alternative representation of all possible plant density combinations by 

focussing on the maximum relative yield possibilities for any combination of two species (Ranganathan et 

al., 1991; Ranganathan, 1992). When relative values of the two yields are known, an economically optimised 

choice can be made. 
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A) B) 

  
Figure 6.1 Yield advantage measurements with bivariate diagrams representing A) land equivalent ratio 

(LER) and B) production possibility frontier (PPF). 

 

By plotting the relative yield of any two competing species it is possible for yield trade-off to be determined. 

The shape of the trend line indicates the nature of the relationship between species. If the curve is convex 

(positive) the interaction is complementary, if it is concave (negative) the interaction competitive. 

 

Intercropping is often credited with increased total biological productivity per unit area of land; however, 

this increase in productivity should also take into account different situations such as farmer or smallholder 

aims and objectives. Willey (1979) categorised three different scenarios for assessing yield advantage in 

intercropping. The first requires full yield of the main (dominant) crop and some yield of a second crop, the 

second requires that the combined intercrop yield exceeds the greater sole crop yield, and the third requires 

that the combined intercrop yield exceeds a combined sole crop yield. 

 

In Chpater 5 of this study I investigated resource competition in a jatropha - maize intercrop system in 

Indonesia. Net effects of four-year-old jatropha intercropped with maize were compared with maize 

monoculture (control) over two growing seasons, with and without mulch and polythene root barriers. Four-

year-old jatropha, planted at 2 m × 2 m was interplanted with three rows of maize at 0.25 m × 0.75 m. The 

three rows of maize were situated in the 1 m middle inter-row. To reduce aboveground competition jatropha 

were pruned at 75 cm aboveground, and to reduce belowground competition jatropha were root pruned and 

400 μm polythene root barriers installed. To improve soil conditions, leaf mulch equivalent to 3.5 t ha-1 was 

incorporated into the soil. Treatments with N applied at 45 kg ha-1 (45N), 90 kg ha-1 (90N), and 135 kg ha-1 

(135N) were also included. All maize intercropping and monoculture treatments (except control) received an 

application of P at 72 kg ha-1, and K at 120 kg ha-1. 
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Our results confirmed that jatropha has potential for intercropping. Applications of jatropha leaf mulch from 

prunings to maize monoculture increased yield comparable with application of N at 21 kg ha-1 (Chapter 5), 

with potential effects through reduced soil evaporation plus nitrogen mineralisation. Pruning was effective in 

managing aboveground competition, while root pruning and root barriers managed competition 

belowground. However below and aboveground competition are inter-related so care and understanding are 

required to maintain an optimal balance. 

 

To understand the complex tree and crop interactions using experimental research is time consuming and 

expensive. The use of tree and crop models is a cost effective technique to explore a wide range of options in 

a given context (Matthews and Stephen, 2002). Van Noordwijk and Lusiana (1999) developed WaNuLCAS, 

a process based model designed to improve understanding of agroforestry systems. This model allows for the 

simulation and extrapolation of nutrient dynamics, water balances, light and nutrients use, crop and tree 

biomass and yield. The WaNuLCAS model was used in this study because it can evaluate a range of 

management options and produce strategies necessary for long-term productivity analysis. Furthermore, the 

model has also been parameterised based on tree-soil-crop experiments conducted in Indonesia. 

 

To extrapolate beyond the jatropha and maize intercropping experiments, models can explore and evaluate 

long term productivity and trade-offs under different management scenarios. However a jatropha parameter 

file is needed to make such simulations. In Chapter 3, jatropha biomass and fruit production were 

parameterised using the FBA model. The allometric scaling relations derived from FBA can be used directly 

in the WaNuLCAS tree library. 

 

This chapter has two objectives: 

 

1. To evaluate long term productivity of jatropha and maize in response to different management scenarios 

under soil and climate similar to those in the experiments. 

2. To quantify trade-offs between jatropha and maize yield under different management scenarios and to 

determine the shape of the production possibility frontier. 

6.2 Materials and methods 

6.2.1 Study site and conditions 

Climate, soil, and crop performance data for this study were obtained from the PT. JGE plantation located in 

Mulo Village in the Wonosari District, Gunungkidul Regency of Special Province Yogyakarta in Indonesia 

(8° 0’ N, 110° 34’ E, 185 m ASL). No agricultural inputs were applied to jatropha plantings and local 

farmers' harvested grass on a daily basis for cattle feed. Weeding was performed once a month. Planting 

material was derived from seed propagated from IP-1M, an improved jatropha population of a first selection 

from Muktiharjo, Central Java (Hasnam and Hartati, 2006). Seedlings were transplanted at age three months, 
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and planting density was 2,500 plants ha-1 with a spacing of 2 m × 2 m. All references to other plant spacing 

combinations use intra-row spacing followed by inter-row spacing. 

 

The study site has an equatorial rainforest climate with mean annual rainfall of 1,800 mm, occurring from 

November to April, periods of < 100 mm per month occurring from May to October. Mean annual 

temperature and relative humidity is 26 °C and 70 % respectively. 

6.2.2 The WaNuLCAS model features 

The WaNuLCAS version 4.01 was used for this study and can be found at: 

http://www.worldagroforestry.org/output/wanulcas-model-water-nutrient-and-light-captture-agroforestry-

system. For a theoretical background the reader is referred to Van Noordwijk and Lusiana (1999), and for a 

practical background to Van Noordwijk et al (2011). The WaNuLCAS model comprises two parts, a 

Microsoft Excel workbook for deriving model parameters, and a stm file for dynamic simulations. The 

model is based on the STELLA platform (flow chart based modelling software) with core modules of 

climate, management (planting schedule and density), tree and crop characteristics, soil water and nutrients. 

In addition to the core modules, there are additional modules for management (e.g. pruning and fertiliser 

rates), labour use and profitability, and pests and diseases. 

 

WaNuLCAS emphasises belowground interactions, where competition for water and nutrients (N and P) 

depend on effective root length densities and uptake demand. Within the model, there are four soil profiles 

and four spatial zones. The soil profile is represented as four horizons, the depth of which can be defined 

within the model, together with specified physical properties and initial water and nitrogen contents for each 

compartment. The model assumes that trees and crops occupy specific zones. For example in an alley with 

two hedgerows, zone 1 and 4 are for trees while zones 2 to 3 are for crops that can be planted at a specific 

time, or planted within a defined sequence. The zone widths within the model are adjustable allowing 

different planting spacing to be easily evaluated. 

6.2.3 Model parameterisation and calibration 

Prior to running WaNuLCAS, baseline data relating to climate, soil characteristics, tree and crop 

characteristics and management practices were updated. Model calibrations were performed using three data 

sets derived from Chapters 4 and 5. The first calibration was for a two-year-old jatropha monoculture with 

no pruning and one-year climate data (Chapter 4). The second calibration was for the maize monoculture 

using control treatment with a two-year climate data; and thirdly for the pruned four-year-old jatropha 

intercropped with maize, with and without mulch, and with or without root barrier treatments, and with one-

year climate data (Chapter 5). 
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6.2.4 Climate conditions and soil profile 

Daily rainfall, evapotranspiration, and soil temperature were recorded on site for the duration of the maize 

growing season. Climate data outside the 2012 and 2013 growing seasons were obtained from the Playen 

District Weather Station Gunungkidul approximately 10 km from the study site. Soil data representing the 

four horizontal profiles were determined prior to the start of the experiment (Table 6.1). 

 

Table 6.1 Soil characteristics for the study site. 

Soil depth 

(cm) 

Clay 

(%) 

Silt 

(%) 

Sand 

(%) 

Organic 

matter 

(%) 

Bulk 

density 

(g cm-3) 

PBray 

(mg cm-3) 

NH4 

(mg cm-3) 

NO3 

(mg cm-3) 

0-10 46.33 48.33 5.33 1.02 1.01 36 0.19 0.09 

10-20 50.33 48.33 1.33 0.86 0.98 15.5 0.18 0.08 

20-30 64.33 34.67 1.00 0.85 0.95 16.5 0.14 0.07 

30-40 54.33 45.33 0.33 0.68 0.85 14.5 0.12 0.06 

 

Soil physical and chemical characteristics were used for pedotransfer function in the module to generate soil 

hydraulic properties. For the soil bulk density and organic matter, soil sampling data were used. 

6.2.5 Tree and crop parameters 

Jatropha characteristics were not available within the WaNuLCAS 'Tree Library' therefore it was necessary 

to first parameterise these. Parameterisation was performed using data from a four-year-old monoculture 

planted at 2 m × 2 m as no suitable jatropha agroforestry systems were available. The limitations associated 

with the parameterisation are acknowledged, however this is considered a firm base on which future research 

can build. 

 

I used FBA to develop allometric equations to estimate above and belowground plant biomass (Appendix 7). 

Aboveground biomass allometric equations in conjunction with plant measurements for growth stage, 

canopy width and height, LAI, fruit biomass, N and P content in the plant organs, litter quality, RLD were 

used as input parameters. Other ‘Tree Library’ parameters such as maximum growth rate, ratio of maximum 

and minimum LAI, and cumulative litter fall equations were calibrated by fitting predicted to observed 

biomass results. See Appendix 8. 

 

Maize parameters are available in the WaNuLCAS 'Crop Library' however; the default parameters were 

modified to increase the length of the generative stage from 30 to 40 days. This increased the total growing 

period from the 90-day default to a 100-day default, which is consistent with current practice at the research 

site. See Appendix 9. 
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6.2.6 Management options 

Management parameters used to calibrate the model included planting date, planting density and alley width, 

pruning, and fertiliser. Growth periods were expressed in Julian days. Planting density for jatropha was 2,500 

trees ha-1 and divided equally between zones one and four. Maize was planted in the second and third zones. 

The width of first and fourth zones was 0.5 m; therefore, the alley width for maize was 1 m. The jatropha 

canopy fraction pruned was 0.9 or pruning to 0.75 m aboveground. This amounted to the equivalent of 3.2 t 

ha-1 and was used as mulch. For mulch treatments, P was also added and applied at 72 kg ha-1. Control 

treatments without fertiliser and mulch were also factored into the model calibration. For jatropha with root 

barrier treatments, calibration was performed by setting the second and third zones to a zero value to indicate 

that no jatropha roots were present in the alley where the maize was grown. 

6.2.7 Model validation 

To evaluate the model’s ability to simulate growth and yield of jatropha and maize in monoculture and 

intercropping systems, predicted results were compared against observed results. For the jatropha 

monoculture, comparisons were made with the jatropha pruning treatment, while for the maize monoculture 

the simulation results were compared with the maize-mulch treatment results. For intercropping, the 

simulation results were compared with mulch and root barrier treatments. To determine model goodness of 

fit between predicted and observed results, we used statistical parameters of ME, RMSE, CD, EF, and CRM 

developed by Loague and Green (1991). See Appendix 2. 

6.2.8 Simulation scenarios 

Different management scenarios were evaluated to determine their effects on the different cropping systems. 

The objective was to develop a series of realistic options that could be adopted for longer production periods. 

Table 6.2 shows the range of simulation scenarios evaluated for jatropha and maize in monoculture and 

intercropping systems. 

 

Jatropha monoculture without pruning and with pruning at alternate years and every year were selected for 

simulation scenarios based on observations during field visits. Maize monoculture without mulch and 

fertiliser, and jatropha intercropping with pruning, mulch, and P application at 72 kg ha-1 were based on 

Chapter 5. Jatropha mulch was obtained from leaf pruning (3.5 t ha-1) and leaf nutrient analysis showed that 

mulch had an equivalent N input of 91 kg ha-1, P input of 6.2 kg ha-1, and K input of 39.8 kg ha-1. In that 

study the application of mulch resulted in an increase in maize yield comparable with the application of N at 

21 kg ha-1. The N balance of mulch is discussed in Section 5.2 and shown in Table 5.4. 
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Table 6.2 Land use simulation scenarios for jatropha monoculture, maize monoculture, and jatropha/maize 

intercropping covering a 20 year period or 40 cropping cycles. 

Simulation scenarios Pruning 
Jatropha 

mulch 

Fertiliser 

(kg ha-1) 
Plant 

Jatropha monoculture 
Yes - - 

Jatropha 
No - - 

Maize monoculture 

- - - Maize 

- With mulch - Maize 

- With mulch P at 72 (72P) Maize 

- - N and P at 40 (N40P40) Maize 

Jatropha/maize intercropping 

Yes - - Jatropha + maize 

Yes With mulch - Jatropha + maize 

Yes With mulch P at 72 (72P) Jatropha + maize 

Yes - N and P at 40 (N40P40) Jatropha + maize 

No - - Jatropha + maize 

No With mulch - Jatropha + maize 

No With mulch P at 72 (72P) Jatropha + maize 

No - N and P at 40 (N40P40) Jatropha + maize 

Note: P = phosphorus; N = nitrogen. 

 

For jatropha intercropping with pruning and mulch, and jatropha intercropping with pruning and N and P 

applications each of 40 kg ha-1 scenarios were selected based on local farmer practice. Finally, jatropha 

intercropping without pruning was based on research literature (Brittaine and Lutaladio, 2010) or while 

jatropha is young (Achten et al., 2008). In this simulation, mulch was applied once a year at the end of dry 

season, and before the first cropping season started, while both N and P were applied together for each 

cropping season. 

 

Little or no data are available for jatropha yield beyond 10 years of age; therefore, simulations were run for 

periods of 20 years or 40 maize cropping seasons to gain an understanding of the long-term productivity 

response. A range of jatropha plant spacing combinations (Table 6.3) was simulated to evaluate the effect on 

growth and yield of jatropha and maize under different planting densities. For each inter-row distance 

scenario, the first and last 50 cm were allocated as jatropha zone, zones 1 and 4 respectively, while the 

middle inter-row distance was allocated for maize in zone 2 and 3. For example, when jatropha had 2 m 

inter-row, the 1 m space in the middle of the inter-row (alley) was allocated for maize planting. 
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Table 6.3 Jatropha planting distance scenarios. 

Intra-row 

distance (m) 

Inter-row 

distance (m) 

Planting pattern 

(m × m) 

Jatropha density 

(trees ha-1) 

1 

2 1 × 2 5,000 

3 1 × 3 3,333 

4 1 × 4 2,500 

5 1 × 5 2,000 

2 

2 2 × 2 2,500 

3 2 × 3 1,667 

4 2 × 4 1,250 

5 2 × 5 1,000 

3 

3 3 × 3 1,111 

4 3 × 4 833 

5 3 × 5 667 

4 
4 4 × 4 625 

5 4 × 5 500 

5 5 5 × 5 400 

Note: m = metre; All plant spacing combinations have the intra-row first followed by the inter-row. 

 

When jatropha had 3 m inter-row, the 2 m alley in the middle of the inter-row was allocated for maize, and 

so forth until the 5 m jatropha inter-row which had a 4 m alley in the middle for maize planting. The model 

was calibrated based on a 1 m inter-row with 3 rows of maize which gives a maize planting density of 26,667 

plants per ha. Therefore, increases in inter-row distance of jatropha spacing reduced jatropha planting density 

but increased maize planting density. 

6.2.9 Scenarios evaluation 

Output from simulation scenarios were analysed using trade-off analysis between jatropha and maize yield. 

Biological productivity trade-offs between tree and crop for intercropping were evaluated by plotting relative 

jatropha yield on one axis and relative maize yield on the other (Figure 6.1). If the tree-crop response result 

is above the 1:1 line, then there is a net positive (complementarity) interaction. If however the result is below 

the 1:1 line, then there is a net negative (competition) interaction (Ranganathan et al., 1991). 

6.3 Results 

All jatropha monoculture scenarios (Figure 6.2A) show that denser planting reduced yield and sparser 

planting densities increased yield.  
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Figure 6.2 (A) Monoculture jatropha yield at different density with several pruning treatments and (B) 

monoculture maize yield in several treatments over 20 years. 

 

The average differences between points across pruning and planting densities show that pruning at alternate 

years decreased yield by 21 % compared with no pruning, while pruning every year decreased yield by 37 % 

when compared with no pruning. 

 

Maize monoculture across different fertiliser scenarios (Figure 6.2B) shows that greater yields are possible 

using mulch and mulch72P than 40N40P, and no mulch and no fertiliser. Yields for mulch and mulch72P 

shared a similar pattern, gradually increasing over time. Yields for mulch, and 40N40P also shared a similar 

pattern, but gradually decreased over time, although 40N40P had a 20 % greater yield in the first planting 

year. Jatropha and maize intercropping for all fertiliser, pruning, and planting density scenarios show similar 

component yield patterns. 

 

Figure 6.3 is an example of how the PPF envelopes input factors such as mulch72P, and no mulch and no 

fertiliser scenarios for unpruned jatropha. Different planting density scenarios produce a range of maximum 
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yield outputs for cumulative component jatropha and maize yields. For scenarios without pruning, mulch or 

fertiliser application, various planting densities appear to favour greater jatropha yield than maize yield. 

Variations within jatropha yields were observed by keeping specific intra-row fixed at different spacing and 

varying the inter-row distance. Jatropha yield increased only until a 3 m inter-row was reached. Planting 

density scenarios with 3 m inter-row produced approximately equal jatropha yields compared with average 

yields from unfertilised monoculture without pruning (see black arrow in Figure 6.3). Other planting density 

scenarios produced jatropha yields that were less than the average from jatropha monoculture unfertilised 

and no pruning scenarios. For maize, the two largest yields were obtained from 2 m inter-row such as 1 m × 

2 m and 2 m × 2 m, after that yields remained constant. If we compare yields from no mulch and no fertiliser 

with mulch72P, it seems the latter resulted in better combinations for maximum yields. 

 

 
Figure 6.3 Jatropha and maize cumulative yield that shows production possibility frontier (PPF) for no 

pruning with mulch and P applied at 72 kg ha-1, and no pruning with no mulch and no fertiliser scenarios at 

various planting density combinations. 

 

Mulch72P at various planting densities showed a wider range of jatropha and maize yields. A narrow inter-

row (≤ 3 m) combined with all intra-row options benefited jatropha yields and the greatest yields especially 

came from combination with 2 m and 3 m intra-rows. For example, 2 m × 2 m scenario gave 6.5 t ha-1 

jatropha and 26 t ha-1 in the whole simulation period. The increase in jatropha yield was the result of maize 

no longer being a productive intercrop. A wider inter-row (≥ 4 m) combined with all intra-row options 
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favoured maize yields. The PPF that frames the mulch72P scenarios makes it possible to determine optimal 

planting densities needed to maximise yields. 

 

To determine the trade-offs between jatropha and maize yields in intercropping with monoculture jatropha 

and maize yield, relative (component) jatropha and maize yields are used (Figure 6.3). All scenario 

combinations for relative jatropha and maize yield produced four PPFs, two PPFs, mulch72P and mulch only 

scenarios have complex shapes, which indicate that jatropha and maize interact positively and are 

complementary. This also means that intercropping provides increased benefits compared with monoculture. 

The other two PPFs, 40N40P, and no mulch and no fertiliser scenarios have concave shapes indicating that 

jatropha and maize interact negatively and are competitive. Yields situated on the 1:1 line indicate that 

intercropping or monoculture can produce equal yields, while yield scenarios situated inside the 1:1 line 

indicate that yields for monoculture will be greater than for intercropping. Almost all intercropping yields 

were greater for monoculture with the exception of some scenarios within 40N40P and no mulch and no 

fertiliser. Details are in Section 6.4.4. This also means that intercropping provides increased benefits 

compared with monoculture. The other two PPFs, 40N40P, and no mulch and no fertiliser scenarios have 

concave shapes indicating that jatropha and maize interact negatively and are competitive.  

 

 
Figure 6.4 Production possibility frontiers (PPF) that show relative jatropha and maize yield trade-offs from 

pruning and fertiliser scenarios that were generated from various planting density combinations. 

 

Yields situated on the 1:1 line indicate that intercropping or monoculture scenarios can produce equal yields, 

while yield scenarios situated inside the 1:1 line indicate that yields for monoculture will be greater than for 

intercropping. Almost all intercropping yields were greater than monoculture with exception some scenarios 

within 40N40P and no mulch and no fertiliser. Details are discussed in Section 6.3.4. 
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6.3.1 Fertiliser 

When the fertiliser effect is measured across all scenarios, mulch72P gave the largest contribution for 

relative jatropha yield of 63 % and 95 % for relative maize yield. Mulch gave a relative jatropha yield of 33 

% and relative maize yield of 91 %. 40N40P gave the largest relative jatropha yield of 98 % and relative 

maize yield of 11 %, while no mulch and no fertiliser gave a relative jatropha yield of 96 % and a relative 

maize yield of 10 %. 

 

The pooled results for fertiliser scenarios as the main effect show that better yields for jatropha and maize 

were obtained from mulch72P as opposed to mulch only. However, when fertiliser inputs are sufficient such 

as from mulch72P and mulch, maize produces an overall relative yield of 1.5 to 3 times greater than jatropha, 

which means maize is dominant. In contrast, if there is little or no additional fertiliser such as in 40N40P and 

no mulch and no fertiliser, then relative jatropha yield was 10 times larger than relative maize yield, and 

jatropha is dominant. 

 

When the pooled N and P nutrient balance from the WaNuLCAS are analysed there was an increase in maize 

N and P uptake, especially for the mulch or mulch72P scenarios. These two scenarios show maize N and P 

uptake was larger for intercropping than for monoculture. For mulch in intercropping, there was a 12 % 

increase in the average N uptake, and was an 11 % increase in the average P uptake compared with 

monoculture maize. For mulch72P in intercropping on average, there was a 16 % increase in average N 

uptake and a 20 % in average P uptake compared with monoculture maize. 

 

The effect of mulch in the WaNuLCAS simulations relates not only to increased N and P uptake, but also to 

a reduction in soil moisture evaporation. Evaporation for the pooled mulch72P was 71 %, for mulch 43 %, 

for 40N40P it was 34 %, and for no mulch and no fertiliser, 37 % less than for monoculture. As water is 

needed for transport of nutrients, less evaporation may have contributed to better water availability and 

nutrient uptake. 

 

The WaNuLCAS simulation expresses the number of stress related days as a percentage of the simulation 

period for jatropha or maize. A 20-year simulation across all scenarios shows that overall the resource 

limiting factors for maize growth are N (52 % of the total simulated period), followed by water (17 % of the 

total simulated period), and P (6 % of the total simulated period). The overall resource limiting factors for 

jatropha growth and yield are water (52 % of the total simulated period), followed by P (35 % of the total 

simulated period), and N (23 % of the simulated period). 

6.3.2 Pruning 

In general, all pruning scenarios show similar results for relative jatropha and maize yield. The best relative 

jatropha yield (75 %) was for pruning at alternate years with a relative maize yield of 52 %. No pruning was 
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next with 72 % relative jatropha yield and 50% relative maize yield. Finally, pruning every year gave a 71 % 

relative jatropha yield and 52 % relative maize yield. 

 

The pooled results for pruning scenarios as the main effect show that overall relative jatropha yield was 40 % 

greater than relative maize yield. However, pruning frequency does not substantially influence relative 

jatropha or maize yield for intercropping. While pruning at alternate years increased relative jatropha yield 

by 3 %, pruning every year decreased relative jatropha yield by 2 %, and both pruning scenarios increased 

relative maize yield by 3 % compared with no pruning. 

6.3.3 Planting density 

The pooled results for planting density as the main effect show an advantage for jatropha with overall 

relative yield 40 % greater than relative maize yield. However, variations in planting density show 

contrasting, but consistent patterns for jatropha and maize, especially when the relative yields were assessed 

by varying the intra-or inter-row distance. 

 

Jatropha produced the most yields when intra- or interspecific competition was least intense. For example the 

2 m × 2 m spacing (2,500 jatropha per ha) produced largest relative jatropha yield of 98 % but at a 1 m × 2 m 

spacing (5,000 jatropha per ha) relative jatropha yield reduced to 88 %. The 3 m × 3 m spacing (1,111 

jatropha per ha) produced relative jatropha yield of 84 % but at a 1 m × 3 m spacing (3,333 jatropha per ha), 

relative jatropha yield reduced to 82 %. For the 2 m × 2 m and 1 m × 4 m spacing, jatropha planting density 

is the same, 2,500 plants per ha. However, there is a threefold increase in maize planting area, which resulted 

in a reduction of relative jatropha yields to 71 %, but a 15 % increase in relative maize yield. 

 

Pooled planting density scenarios show the greatest relative maize yield (55 %) was obtained from 1 m × 2 m 

(5,000 jatropha per ha) spacing. Increasing the intra-row to 2 m (2,500 jatropha per ha) reduced relative 

maize yield to 45 %. Maize at 3 m inter-row followed a similar pattern, but with a smaller reduction in 

relative yield which levelled off for the 4 m and 5 m inter-row plantings. 

 

At high planting densities, the shading effect of the jatropha canopy reduced soil evaporation. For example 

when jatropha and maize were intercropped at 1 m × 2 m (5,000 jatropha per ha), soil evaporation was 30 % 

lower than for the jatropha monoculture, and 43 % lower than the maize monoculture. At 2 m × 2 m (2,500 

jatropha per ha), soil evaporation was 33 % lower than the jatropha monoculture, and 42 % lower than the 

maize monoculture. 

6.3.4 Combination scenarios for fertiliser, pruning, and planting density 

In the three previous sections I examined the effects individual management variables of fertiliser, pruning, 

and planting densities and how they affected jatropha and maize intercropping yields. This section presents 

the results for combined management scenarios. This was followed by mulch72P with pruning at alternate 



Trade-offs between Jatropha curcas L. and maize intercropping yield under different management scenarios 

using the WaNuLCAS model 

115 

years where jatropha yield was 180 % and maize yield 75 %. For mulch72P with pruning every year jatropha 

yield was 130 % and maize yield was 98 %. 

 

The mulch72P had N and P uptake 3 times larger than jatropha monoculture, while water uptake was 8 % 

greater than jatropha monoculture. For mulch72P with pruning at alternate years, the N and P uptake was 77 

% and 57 % greater than jatropha monoculture, while the water uptake was 21 % smaller. For mulch72P 

with pruning every year, N and P uptake was 40 % and 20 % respectively larger than jatropha monoculture, 

while the water uptake was 27 % smaller. 

 

The mulch72P largest relative jatropha yields were obtained from the 2 m x 2 m spacing, which had a larger 

yield than the 1 m inter-row. At the smaller inter-row spacing, nutrient leaching, especially N was less than 

at 5 m. Increasing the inter-row distance from 2 m to 5 m resulted in a gradual increase in N leaching, with 

differences of approximately 14 % for no pruning, and 19 % for pruning at alternate years and every year. 

 

For the mulch72P with pruning every year scenario, alternate years, and no pruning led to similar jatropha 

and maize yields of 101 % to 99 % and 62 % to 57 % respectively. For mulch72P with pruning every year, 

different inter-row distance reduced maize yield only 3 to 4 %. It seems when jatropha is fertilised with 

mulch72P, and is pruned every year, increased inter-row distance did not compensate for larger yields. The 

largest maize yield of 101 % was produced at 2 m × 3 m spacing, which decreased to 98 % for the 2 m × 2 m 

and 97 % for 2 m × 4 m. Mulch only, pruning every year, and no pruning produced similar yield patterns, 

however the reduction was slightly larger than for mulch72P. Mulch72P and mulch provided nutrients and 

reduced soil evaporation by 55 % for pruning every year, by 57 % for pruning alternate years, and by 58 % 

for no pruning when compared with maize monoculture. 

 

For mulch72P with pruning alternate years, a minimum inter-row spacing of 3 m is required otherwise 

relative maize yields are reduced by 25 %, while for mulch72P with no pruning the minimum inter-row 

spacing is 4 m otherwise maize yield is reduced by 20 % to 65 %. 

 

When jatropha is pruned every year, maize growth limitation by light interception (relative to maize 

monoculture) is only 2 % to 9 %. If jatropha is pruned in alternate years, the smallest inter-row limits 

potential maize growth by 14 %, while the wider inter-row spacing's only reduce yield by 3 % to 9 %. If 

jatropha is not pruned, the smallest inter-row spacing limits maize yield by 40 %, while the wider spacing 

limits yield by 4 % to 11 %. 

 

In the mulch scenario, the general PPF trend shows that mulch tends to favour relative maize yield rather 

than relative jatropha yield. For instance, the pooled results of mulch with no pruning, pruning every year, 

and pruning alternate years, produced relative jatropha yields of 27 %, 34 %, 38 %, and relative maize yields 
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of 92 %, 90 %, and 90 % respectively. Both maize N and P uptake in mulch scenarios was 12 % greater than 

maize monoculture, while jatropha N and P uptake was 27 % and 54 % smaller than uptake under jatropha 

monoculture respectively. For jatropha, P was the second most limiting factor after the water. P limitation 

across the different pruning scenarios covered 35 % of the simulation period. The mulch scenario shows 

overall maize water uptake was 14 % greater than maize monoculture while overall jatropha water uptake 

was 61 % lower than jatropha monoculture. 

 

In the mulch scenario, the largest relative jatropha yield was obtained from pruning at every year combined 

with the smallest inter-row of 2 m, and with 2 m intra-row that had larger yield than 1 m intra-row. At 2 m 

inter-row, relative jatropha yield was 72 % while relative maize yield was 77 %. Other pruning scenarios 

also followed this pattern with reduced relative jatropha yield but increased relative maize yield. For 

example under similar conditions, pruning at alternate years had a relative jatropha yield of 55 % and a 

relative maize yield of 85 %. For mulch and 2 m inter-row, combined with pruning every year gave the best 

water uptake for jatropha compared with other pruning scenarios. Jatropha water uptake for pruning every 

year, alternate years, and no pruning was 43 %, 54 %, and 66 % respectively, smaller than jatropha 

monoculture. 

 

To maximise maize yield, mulch in combination with no pruning and the widest inter-row (5 m) gave a 

greater yield than the smaller inter-row. Following no pruning was pruning at alternate years, and pruning 

every year in similar planting density scenarios. Overall mulch scenarios across the different pruning 

scenarios shows that inter-row distance provides increased benefits for relative maize yield, at least up to and 

including 4 m, after which yield reached a plateau. For jatropha, however increased inter-row distance 

reduced jatropha density and relative yield. For example, for no pruning, a 2 m inter-row had relative maize 

yield of 91 % with 44 % relative jatropha yield, while 4 m or 5 m inter-row had relative maize yield of 93 % 

with 22 % relative jatropha yield. Widening the inter-row distance increases N, P, and water uptake for 

maize, but decreases N, P, and water uptake for jatropha. For no pruning in a 2 m inter-row, maize N, P, and 

water uptake was 5 % less than maize monoculture and jatropha N, P, and water uptake was 24 % larger, 40 

% and 66 % smaller than jatropha monoculture. At 5 m inter-row, maize N, P, and water uptake was 53 % 

greater than maize monoculture respectively. As for jatropha, the N, P, and water uptake were 34 %, 62 %, 

and 85 % smaller than jatropha monoculture respectively. It is clear that increasing the inter-row distance 

reduces the number of jatropha per ha and this is not compensated by an increase in yield per tree. 

 

For the 40N40P, no mulch and no fertiliser scenarios, there was competition between jatropha and maize, 

with jatropha out-competing maize. Pruning alternate years produced the greatest relative jatropha yield at 

121 % with 9 % relative maize yield. This was followed by equal yields in the pruning every year and no 

pruning scenarios at 99 % for jatropha relative yield and 9 % relative maize yield. For pruning alternate 

years, relative jatropha yield increased when the spacing increased from 4 m to 5 m inter-row in combination 

with > 3 m intra-row. Maximum jatropha relative yield was achieved at 5 m × 5 m planting density, which 
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means when grown in an intercropping scenario, jatropha produces greater yields than when grown as 

monoculture. In contrast, the smaller inter-row distances of 2 m and intra-row distances of 1 m and 2 m 

produced lower yields (89 %) when grown as intercropping. In this situation, it is therefore more 

advantageous to grow jatropha as a monoculture. 

 

When jatropha was pruned every year or was not pruned, the smallest intra-row (1 m) in combination with 2 

m and 3 m inter-row produced an equal benefit (100 % relative jatropha yield) when grown either as 

intercropping or monoculture. As for relative maize yield, the smallest inter-row (2 m) in combination with 

intra-row of 1 m and 2 m produced similar yields across the different pruning scenarios. These relative maize 

yields were however only 12 % to 24 % of the largest relative maize yield produced in the mulch or 

mulch72P scenarios. 

6.4 Discussion 

The WaNuLCAS model proved to be a useful tool for simulation of long-term productivity for a wide range 

of management scenarios in jatropha-maize intercropping based agroforestry systems. Our results show a 

substantial scope for intercropping jatropha and maize, especially if maize is fertilised and assessed in 

combination with jatropha pruning and planting density management. 

 

I assessed yield trade-offs by comparing jatropha and maize grown as monoculture and intercropping. I used 

Willey’s (1979) first scenario to assess the yield advantage. This is where intercropping gives full yield of 

the main crop and some yield for the secondary crop. For this scenario, I used two distinct options. The first 

was to treat jatropha as the main crop and maize as the secondary crop with the aim of maximising jatropha 

yield. Currently, this situation is somewhat unlikely from farmer’s perspective given the current commercial 

circumstances where jatropha yields and price are both low and uncertain (Van Eijck et al., 2014a). Given 

that this situation may change in future, there is a need to consider the second option. This was to treat maize 

as the main crop and jatropha as the secondary crop with the objective to maximise maize yield. This is the 

predominant situation for local farmers who plant jatropha primarily as a means of gaining extra income, 

minimising their risk or aiming for yield stability. 

 

To determine maximum yield for jatropha or maize, our simulated results are framed within the PPF 

developed by Ranganathan et al. (1991) and Ranganathan (1992). This enables us to determine maximum 

yield outputs for jatropha or maize based on various inputs such as fertiliser, pruning, and planting density 

scenarios and its combinations. In addition to yield, the PPF highlights any dominance effect between 

jatropha and maize in the intercropping and monoculture systems. 
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6.4.1 Fertiliser 

The addition of leaf mulch as a source of nutrients and organic matter in the alley or inter-row is a common 

agroforestry practice in alley cropping or intercropping systems (Kang et al., 1981; Palm, 1995; Rao et al., 

1997). Our simulations for maize monoculture (Figure 6.2B) show that the addition of jatropha leaf prunings 

as mulch or mulch with P applied at 72 kg ha-1 (mulch72P) can sustain jatropha and maize long-term 

productivity. 

 

Jatropha mulch nutrient analysis showed that it has sufficient N (91 kg N ha-1) theoretically to meet maize 

requirements, but that it supplies only small amount of P (6.2 kg ha-1) which is insufficient (Chapter 5). The 

addition of P combined with organic matter for annual crop production will be necessary, especially if the 

soils are deficient in P (Palm, 1995; Sanchez, 1995; Rao et al., 1997). Therefore, I included mulch72P in this 

study. Results from Chapter 5 showed addition of mulch72P in maize monoculture increased yield 

comparable with equivalent of N application at 21 kg ha-1. The simulation results with mulch72P and mulch 

scenarios showed a major portion of N added from mulch was tied up in the soil organic matter and lost 

through N leaching. Therefore mulch is beneficial in the long-term soil fertility as it increases the amount of 

organic N in the soil (Palm, 1995). 

 

Our simulations are in line with various studies that show the addition of P in combination with organic 

matter can increase maize N and P uptake and consequently lead to greater maize yields (Gachengo et al., 

1999; Nziguheba et al., 2000; Kwabiah et al., 2003) in intercropping than in monoculture (Akinnifesi et al., 

2007; Mukuralinda et al., 2010). Simulations for 40N40P, and no mulch and no fertiliser affect maize yield 

more than jatropha yield. Maize yield in these scenarios were the smallest compared with the mulch and 

mulch72P scenarios, yet jatropha yield was comparable with mulch or mulch72P scenarios. Mulch72P and 

mulch also effectively reduce soil evaporation by minimising the impact of solar radiation, and by 

minimising soil surface air flow (Riha and McIntyre, 1999). Mulch72P had less soil evaporation than mulch, 

possibly because the addition of P enhanced rooting close to the soil surface thereby increasing root water 

uptake (Riha and McIntyre, 1999).  

 

In the simulations, the most limiting factor for jatropha was water, while for maize it was N. The results are 

understandable as maize is an annual crop with a short life cycle, occupying a small soil volume for water 

and nutrient extraction. Maize has been bred for high yield with high nutrient demand, especially N, 

therefore if N is limited; growth and finally yield are low and will decline over time. Unlike maize, jatropha 

is a perennial with a longer lifespan. Jatropha also has the advantage that its roots can utilise a larger volume 

of belowground resources (Van Noordwijk et al., 1996). This is especially true if the jatropha root system is 

established before the maize is planted. If we take into account jatropha that has not been pruned then the 

jatropha advantage in capturing resources from a larger area and in enhancing soil physical and chemical 

properties under its canopy is greater (Ong et al., 1996). The jatropha parameterisation in this study is not 
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from a high-yielding variety. However; it does show some adaptation to the local environment, and to the 

poor soil fertility. In addition jatropha's dependency on regular rainfall was highlighted by the limited soil 

water availability resulting from the sites shallow soil and limited root development. 

6.4.2 Pruning 

Pooled results for pruning scenarios do not show substantial differences. However, if we compare the pooled 

results for pruning scenarios with jatropha monoculture for the different pruning and planting density 

scenarios (Figure 6.2A) we see greater differences between pruning at alternate years and pruning every 

year, and for no pruning. Moreover in Chapter 4 two-year-old jatropha monoculture grown without external 

inputs, and at a plant spacing of 2 m × 2 m, and pruned to a height of 75 cm, reduced yield by 75 % 

compared with no pruning. Other jatropha monoculture studies with pruning treatments also show yield 

reductions when compared with no pruning treatments, although the degree of yield reductions varied with 

age, management practices (plant spacing, pruning heights, and fertiliser), and the environment (Ghosh et al., 

2011; Singh et al., 2013). 

 

Jatropha pruning research is still limited and no pruning standards exist; however the examples above show 

that pruning is not the sole factor for intercropping or monoculture. Pruning in combination with fertiliser 

and planting density can also change relative jatropha and maize yield relationships, which is discussed in 

Section 6.4.4. 

6.4.3 Planting density  

The examples given in the pooled planting density results show that although jatropha yield dominates 

maize, variations in planting density can change jatropha intra and interspecific competition. Resource 

capture for light, soil water and nutrients between jatropha and maize is influenced by planting density. 

 

At small inter-row or high planting densities, jatropha benefited from reduced soil evaporation and nutrient 

access provided by maize. Widening the inter-row reduces jatropha light interception, soil water and nutrient 

access, and ultimately reduces jatropha's capacity to compete with maize, and with neighbouring jatropha 

shrubs. Similar effects have been observed between pigeon pea and sorghum (Daniel and Ong, 1990), with 

other tree/shrub species and maize (Lawson and Kang, 1990), and with sugar cane and cereals (Willey, 

1990). Interspecific competition between jatropha and maize in this case was not a problem because the 

pooled yield effect was less than the intraspecific competition between jatropha (Ong et al., 1996). Losses in 

jatropha yield mean greater maize yields and this is especially important when socio-economic conditions 

favour maize over jatropha. 

 

Tree canopy shading reduces solar radiation intensity thereby reducing soil evaporation. Reductions in soil 

evaporation can be effective in reducing crop transpiration rates that result in an increased water use 
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efficiency (Ong et al., 2000; Ong et al., 2006; Lott et al., 2009). Shading also reduces leaf temperature, 

minimising heat stress, reducing air temperature, wind speed, and saturation deficit, effectively reducing 

water use (Monteith et al., 1991; Jonsson et al., 1999; Ong et al., 2000). In general, shading is beneficial; 

however, competition for soil water and nutrients, and light will still be present and favour the dominant 

species. 

6.4.4 Fertiliser, pruning, and planting density combination scenarios  

Assessment of all scenario PPF trends (Figure 6.4) shows several possibilities for maximising relative 

jatropha or maize yield. For jatropha, the combination that produces the greatest (maximum) relative yields 

are from mulch72P and unpruned jatropha; planted at the smallest maize planting density (2 m inter-row) 

with 2 m intra-row giving a larger yield than the 1 m inter-row. The next greatest jatropha yield was obtained 

from the 40N40P, and no mulch and no fertiliser scenarios with pruning at alternate years, planted at the 

widest intra-and inter-rows. Finally, mulch can give the best jatropha yield when it was pruned every year 

and was planted at 2 m × 2 m spacing. For maize, greatest yield was also obtained from mulch72P, but only 

in combination with pruning every year. For this scenario, different planting densities did not increase maize 

yield substantially, although a slight increase in relative maize yield was obtained from 2 m × 3 m spacing. 

The next greatest maize yield was obtained from mulch in combination with no pruning scenario, planted at 

the widest inter-row (5 m) and irrespective of intra-row spacing. The remaining fertiliser scenarios, 40N40P, 

and no mulch and no fertiliser had the smallest relative maize yields. 

 

The reason certain scenario combinations produced greater relative yield for jatropha or maize is due to 

resource capture, use, and conversion efficiency. For example in the case of jatropha, the combinations of 

mulch72P, unpruned jatropha, and smallest inter-row (2 m) gave the greatest relative jatropha yield because 

N, P, and water uptake were the greater when compared with the other scenarios. Inter-row spacing of 2 m 

also had the lowest N leaching, probably for two reasons. Firstly, competition between jatropha and maize 

for belowground resources at 2 m inter-row would result in resources being used more efficiently. Secondly, 

jatropha roots grow deeper and potentially beneath the maize roots creating a ‘safety-net’ effect or filter 

function to capture N before it is lost. The ‘safety-net’ concept of Van Noordwijk et al. (1996) considers that 

deep rooting trees intercept nutrients which have leached below the crop rooting zone. The safety-net effect 

has already been tested in tropical alley cropping between maize and gliricidia, and with peltophorum 

(Peltophorum dasyrrachis) in North Lampung, Indonesia (Rowe et al., 1999), and in temperate alley 

cropping between cotton (Gossypium hirsutum) and pecan (Carya illinoensis) in Florida, USA (Allen et al., 

2004) by measuring 15N uptake at various soil depths between crops and trees. 

 

During maize destructive root sampling in Chapter 4 I observed many jatropha roots growing beneath the 

maize crop. RLD measurements for jatropha show greater root length density in the first 20 cm, 1 cm cm-3 to 

0.8 cm cm-3, while in the second 20 cm depth it ranged from 0.09 cm cm-3 to 0.04 cm cm-3. The greater RLD 

in the first 20 cm indicates strong and direct competition by jatropha roots with the maize root system, 
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resulting in reduced maize yield. Although RLD in the second 20 cm was less than the first 20 cm, there is 

still a safety net effect. This is because RLD is not crucial and can be as low as < 1 cm cm-3 to 0.001 cm cm-

3, while the N residence time is more important (Van Noordwijk and Cadisch, 2002). For the 2 m × 2 m 

spacing, the whole system safety-net effect was greater for mulchP2, followed by mulch, 40N40P, and no 

mulch and no fertiliser. Moreover, the whole system safety net effect across the different pruning scenarios 

was similar, 64 %. However, for the soil layer 20 cm to 30 cm, the safety net effect for pruning every year 

was 21 % while for pruning alternate years and no pruning it was 16 %. Pruning every year had a greater 

safety net effect probably because of increased N demand to rebuild aboveground biomass. Leaching is 

related to rainfall (intensity and amount), tree N demand, and RLD (Van Noordwijk and Cadisch, 2002) so 

management factors such as pruning timing and quality and fertiliser application are important 

considerations for the safety-net function (Cadisch et al., 1997). 

 

Different pruning scenarios have different implications for nutrient and water uptake for jatropha and maize. 

While no pruning gave the greatest nutrient and water uptake for jatropha, pruning every year resulted in the 

smallest nutrient and water uptake. Therefore, competition belowground for water and nutrient with maize 

was reduced. Pruning every year also reduced jatropha aboveground competition therefore maize light 

interception increased. If the annual crop is planted at the time the tree is pruned then above and 

belowground competition by the tree is minimised, and the crop can be established before the tree canopy 

has fully recovered (Jackson et al., 2000). 

 

When the different pruning scenarios were assessed, mulch produced the smallest jatropha yields. This is 

largely due to a reduced water uptake followed by a reduced nutrient uptake. The reduced soil evaporation 

and increased nutrients provided by mulch, affects maize directly as the mulch was incorporated directly into 

the soil where maize was grown. Maize therefore had direct access of those benefits whereas jatropha did 

not. 

 

Pruning scenarios also have different implications for jatropha and maize. First, they confirm the previous 

findings that current jatropha pruning technique such as top pruning at certain heights needs to be improved 

if we are to maximise yields (Chapter 4). The objective of pruning jatropha is to encourage new shoot/branch 

development as flowering occurs on young wood/branch where the belief is that more branches equal more 

fruit. However, flowering only takes place on certain new branches (productive branches) and not on all 

branches (Chapter 3). Second, current jatropha pruning techniques benefit maize or other intercrops planted 

in between as pruning reduces both above and belowground competition, which can be a pruning objective in 

agroforestry systems. 

 

Although (shoot) pruning can effectively minimise aboveground competition resulting in greater yields of 

the intercrop (Duguma et al., 1988), care does need to be taken with pruning frequency and height as they 
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may limit total tree biomass production and nutrient recycling (Kang, 1993), and may change belowground 

root distribution and size. For instance, high frequency pruning of Senna siamea led to an increase in smaller 

and more superficial roots (Vanlauwe et al., 2002). A review of tree root characteristics by Schroth in (1995) 

showed that pruning increased root branching in the topsoil and restricted roots to shallower soil depths 

when compared with unpruned trees. A study involving five leguminous trees showed that a pruning height 

of 0.5 m aboveground produced a greater number of smaller more superficial roots than pruning to 0.75 m or 

1 m aboveground, but had no effect on shoot : root ratios, or on the relative importance of the tap root 

(Hairiah et al., 1992). Changes in tree root distribution and size such as smaller superficial roots growth from 

pruning can increase water and nutrient competition for annual crop within the top soil. 

 

In general shoot pruning causes a temporary reduction in root growth as defoliation disrupts the supply of 

photosynthate for root growth (Eissenstat and Duncan, 1992; Van Noordwijk et al., 1996). In citrus for 

example pruning reduced RLD by 20 %, however this was replaced within 9 weeks of pruning (Eissenstat 

and Duncan, 1992). The effects of pruning can be age related as fine root and nodule production, turnover, 

and decomposition was greater in 2-year old Erythrina poeppigiana than for the 8 year-old plants (Chesney 

and Nygren, 2002). Root and nodule decomposition will have a small but positive impact on soil nutrient 

status (Van Noordwijk et al., 1996). 

 

Increasing inter-row distance to maximise maize yield from 2 m to 4 m or 5 m also effectively reduced the 

impact of tree shading, especially when jatropha is not pruned or only pruned at alternate years. Our findings 

are similar to those where maize yield was lower when intercropped with Leucaena leucocephala at 2 m 

spacing than at 4 m spacing. This was due to the greater shading effect (Lawson and Kang, 1990). For 

intercropping light capture is a function of the fraction of photosynthetically active radiation (PAR) 

intercepted by each species and the efficiency with which it is processed (Ong et al., 1996). Light capture is 

influenced by the heterogeneous nature of the canopies and planting time (Keating and Carberry, 1993; Ong 

et al., 1996). 

 

In essence successful intercropping depends on achieving a balance between complementary (positive) and 

competitive (negative) interactions (Nair, 1993; Van Noordwijk et al., 2011). Since all plants compete for the 

same finite resources, the degree of complementarity or competition between tree and crop is dependent on 

efficiency. Complementarity may be either spatial or temporal (Ong et al., 1996) and should be considered in 

the context of niche differentiation (Anderson and Sinclair, 1993). It is possible however that intercropping 

may produce a synergy between tree and crop that results in a greater productivity than for a monoculture 

(Van Noordwijk and Tomich, 1995). 

 

In this study, I measured biological production under different management scenarios; however activities 

such as harvesting fruit from unpruned jatropha and regular pruning are labour demanding and may not be 

easily accepted. Ultimately it comes down to the yield combinations that result from the fertiliser, pruning 
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and plant spacing and fit best with farmers objectives such as the combinations that provide the highest total 

revenue per hectare depending on cultivation costs and market prices. 

6.4.5 Shape of production possibility frontier (PPF) 

When realistic sole crop scenarios are used for scaling, our results as shown in (Figure 6.4) differ 

substantively from the expectations of Figure 6.1. Similar discrepancies have been reported for intercropping 

of teak (Tectona grandis) and maize (Khasanah et al., 2015) where the predicted teak growth exceeded 

monoculture. Agroforestry experiments in France also showed that tree performance exceeded the 

monoculture control derived from forestry practice, despite a lower planting density (Balandier and Dupraz, 

1998; Dupraz et al., 1999). In all these cases, the trees benefited from the nutrients provided to the crop. 

When ‘farmer practice’ is used as a point of reference for determining PPF then the typical convex or 

concave shapes may differ from standard theory shown in Figure 6.1. 

6.5 Conclusion 

Across the different fertiliser scenarios, mulch72P produced the greatest jatropha and maize yields. 

Mulch72P not only provides nutrients but also reduces soil evaporation. Maximum jatropha yield was 

obtained in the no pruning scenario when planted at 2 m inter-row. Smaller inter-row plantings maximise 

jatropha roots that then provide a safety-net effect. To maximise maize yield, jatropha should be pruned 

every year to reduce water and nutrient uptake, and aboveground competition for light during the crucial 

growth stages of maize. When jatropha is pruned every year the inter-row does not affect maize yield. 

 

Long-term productivity of jatropha and maize was explored in a tree-crop intercropping system, using the 

agroforestry based WaNuLCAS model. There is considerable scope for jatropha and maize intercropping, 

especially if management practices such as fertiliser, pruning, and planting density are considered. Different 

management practices can reduce jatropha and maize competition and/or enhance complementarity. There 

remains however a yield trade-off due to the multiple objectives that exist within any intercropping system. 

If the objective is to maximise jatropha yield, then maize yield suffers, and vice versa. Ultimately, it comes 

down to the yield combinations of fertilising, pruning, and plant spacing that provide the highest total 

revenue per hectare depending on cultivation costs and market prices. The shapes of the production 

possibility frontier established in this study were different from common theory when the farmer’s practice 

was used as a reference. 
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7.1 Introduction 

In this final chapter, the main findings, their implications, and limitations are discussed. The thesis 

hypothesis was that jatropha growth, development, and yield is limited by the biophysical factors of plant 

characteristics, cropping systems, and management practices. 

 

The review in Chapter 2 shows that despite the high expectations fuelled by market pull, technology push, 

and numerous actors the commercial potential for jatropha is further limited by policy and governance, 

economics, social technology, infrastructure and environmental factors, ultimately leading to 

disappointment. The research reported in Chapters 3 to 6 of this thesis provides answers to our hypothesis. In 

this final chapter I discuss the research findings and their relationship to future research in two main areas; 

plant characteristics (Section 7.2.1) and management (Section 7.2.3) within different cropping systems. 

Afterwards in Section 7.3, I revisit the claims of jatropha as a biofuel crop and further integrate our findings 

into constraints, challenges and opportunities for the improvement of jatropha plant characteristics, resource 

capture in different cropping systems and management. In Section 7.4 I present the lessons learnt from our 

review of the hype and disappointment cycle. I end this chapter with concluding remarks. 

7.2 Biophysical factors 

The biophysical factors and their implications for growth and development are discussed using empirical 

and/or mechanistic modelling approaches. Models allowed for hypotheses testing, synthesising knowledge, 

describing and understanding complex systems and interactions and in comparing different scenarios. 

 

I first briefly remind the reader of the methods used and their construction in answering the research 

hypothesis. In Chapter 3 empirical modeling for allometric equations with power function and FBA model 

was used to determine above and belowground biomass, and HI. In Chapter 4 empirical modeling for 

polynomial with multivariate linear regression was used to determine relationship among seed yield and 

vegetative components under different management and cropping systems. In Chapter 5 a simple linear 

function of empirical model (I = F ± C) was used to determine interactions (e.g. competition and 

complementarity/facilitation) of above and belowground environmental resources in maize/jatropha 

intercropping. In Chapter 6 the mechanistic model of WaNuLCAS was used to determine long-term 

productivity and yield trade-offs under different management scenarios for monoculture and intercropping. 

 

The biophysical factors are approached from the perspectives of plant characteristics, system productivity, 

and management practices. 

7.2.1 Plant characteristics 

Understanding plant (phenotypic) characteristics of jatropha growth and yield is crucial to improving 

productivity, performance, and management. Plant characteristics are essentially genotype expression (G) as 

influenced by interactions with the environment (E) and management (M). FBA and yield studies for 
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monoculture and intercropping used IP-1M planting material, a first improved jatropha population from 

Muktiharjo. IP-1M has vigorous vegetative growth that is more suited to revegetation and remedial purposes. 

The hedge study (Chapter 4) used a local Sumbawa provenance from Sumbawa Besar, NTB. I was unable to 

explore the difference and relationship on jatropha characteristics from various genotypes. The focus was to 

understand the characteristics within the existing genotypes grown within the study sites and in relation to 

the cropping system and existing management practices. 

 

In Chapter 3, relationships between the above and belowground biomass were estimated from stem (base) 

diameter using an FBA allometric approach. The pattern showed increases in stem diameter resulted in 

increases in biomass. Comparison with other jatropha biomass research showed similar trends; however 

variation in the grouping patterns is likely caused by differences in planting material, location and 

management. 

 

In Chapter 4, seed yield and vegetative characteristics such as plant height, stem diameter and length, LAI, 

canopy height, width, volume, number of branches, and number of productive and non-productive twigs 

were developed for the different cropping systems using simple polynomial approach. Overall results show 

that growth and yield of jatropha varies and is dependent on plant age, cropping system used, and 

management techniques. There was, however, a trend where seed yield across the three cropping systems can 

be determined by plant height and numbers of productive twigs, although numbers of inflorescence clusters 

per productive twig may be more important. 

 

Comparisons with other studies show variable results for seed yield and its relationship with other vegetative 

characteristics. Plant height had significant relationship with seed yield consistent with Rao et al. (2008), 

Tripathi et al. (2013), and Shabanimofrad et al. (2013). This is because plant height and seed yield have high 

heritability, indicating genetic correlation is important in determining phenotypic correlation (Rao et al., 

2008). Rafii et al. (2012) found no significant relationship between plant height and seed yield as the 

heritability of both traits is low which may indicate that E and M have more important roles than G in 

determining these traits. Such contradictory results can occur especially if plant height and seed yield are 

controlled by pleiotropic genes. This is because pleiotropic genes do not necessarily result in observable 

correlations as expression will depend on allele frequencies (Mode and Robinson, 1959; Falconer, 1989). 

 

Despite the progress there is still limited available information relating to biomass partitioning or allocation 

into reproductive biomass of fruit and seeds in relation to vegetative above and belowground biomass 

partitioning, plant architecture and plasticity. Understanding these aspects of growth and development is vital 

to improving productivity, performance and management. 
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7.2.1.1 Above and belowground biomass, and harvest index 

Jatropha yield is a consequence of total biomass production and distribution. Therefore to understand 

partitioning of yield biomass, separation and determination of above and belowground biomass is needed. 

In Chapter 3, jatropha biomass and plant architecture was studied using FBA model based on the ‘pipe-stem 

model’ (Van Noordwijk and Mulia, 2002). FBA allowed compatibility in the tree parameterisation module 

for WaNuLCAS model discussed in Chapter 6. The results of FBA simulations were evaluated and 

compared with biomass measurements obtained through destructive sampling. Adjustments were required to 

the FBA model in order to capture the multi-stemmed growth habit and heterogeneity of jatropha planting 

material used in this study. This included tapering coefficients for different branch diameter categorisations 

and fruit biomass on the terminal branch. Implementation of a revised FBA model provides variable 

estimations of total aboveground biomass for twig, leaf and branch biomass depending on how well the 

jatropha fit the fractal branching architecture. The adjustments made and the results obtained clearly support 

the strength of this model and confirm its application as a non-destructive technique for determining 

aboveground biomass. 

 

Aboveground biomass is partitioned predominantly into supporting structures of stem, branch and twig, 

while fruit was found to account for the smallest portion of the samples taken. Fruit biomass was not well 

estimated therefore further research is required on fruit-bearing twigs and fruit dimensions to fine-tune the 

model. Below to aboveground biomass ratio was 0.5 which means larger biomass allocation to above than 

belowground biomass. According to the functional equilibrium approach (Brouwer and De Wit, 1969; De 

Willigen and Van Noordwijk, 1987) under environmental conditions that reduce the specific activity of the 

roots such as a decrease in water or nutrients availability, plants would increase the biomass allocation 

toward the roots. Likewise, conditions that decrease the specific activity of the shoot, such as a reduction in 

light intensity or CO2 concentration, increase the biomass allocation toward the shoots (Wilson, 1988). The 

larger aboveground biomass allocation in comparison to belowground found in this study was likely due to 

reduced light availability as the jatropha was already four-years-old, planted at 2 m × 2 m and had achieved 

canopy closure. 

 

Model results predicted a larger belowground biomass than expected for jatropha. Jatropha is reputed to be a 

drought tolerant species and this may be due to the roots serving as source of water storage. During 

monoculture cultivation jatropha roots experience diverse growth conditions and the fractal properties may 

be altered by growth responses to mechanical stimuli (Danjon et al., 2005), soil geometry (Nicoll et al., 

2006), soil layer properties, and resource availability (Pierce et al., 2013). Even within a single plant, the 

applicability of fractal branching model (Soethe et al., 2007) may have its limitations. 

 

In other jatropha studies, biomass production and allocation to above and belowground have been 

determined using destructive measurement (Rao et al., 2013) and non-destructive methods using allometric 
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relationships (Ghezehei et al., 2009; Achten et al., 2010d; Firdaus and Husni, 2012; Makungwa et al., 2013; 

Baumert and Khamzina, 2015). Information on biomass partitioning in the reproductive part as fruit/seed 

yield or HI is limited, with exception of Ghezehei et al. (2015), direct (economic) yield is the most common 

measure used. The reason for this is likely due to the fact that jatropha is a perennial and yield may not be 

harvested until several years after planting, which unlike HI for annuals is easily determined on seasonal or 

annual basis. 

 

Yield from destructive sampling showed that a HI of 1 % is likely due to the small sample size and the age of 

planting material used. Research by Ghezehei et al. (2015) showed yearly variations of HI from 0.5 % to 2.5 

% in three year old jatropha-kikuyu grass silvopastoral, observed over a two year period. Our results are 

within these parameters. When compared with 46 % to 55 % for HI from commercial mature oil palm 

(Elaeis guineensis Jacq.) trees, (Wahid et al., 2005) the results are very low. In some ways the comparison of 

HI with oil palm is not fair as jatropha breeding is a long way behind and the planting materials used in both 

studies were not high yielding varieties; effectively they are still wild-types. 

 

HI for many crop plants is sensitive to management and environmental factors such as the cropping system 

(Reganold et al., 2001), planting system and density (Palmer, 1988; Robinson and Lakso, 1991), water status 

and nitrogen availability (Donald and Hamblin, 1976), including its genotype, age, and plant size or 

developmental stage (Cannell, 1985; Pulkkinen et al., 1989). The influence of these various factors was 

obvious in the yield results and comparisons in Chapter 4. Although HI was not directly generated we can 

see that the proportion of yield and aboveground biomass varied between monoculture, intercropping, and 

hedges as they interact with different management practices such as shoot pruning, root pruning, mulching, 

plant spacing, and intercropping. This study used HI to determine biomass allocation to fruit or seed yield 

and also to make comparisons between the different plant parts. 

7.2.1.2 Plant architecture 

Plant architecture has been long recognised as an important component of horticultural crops (Oldeman, 

1974; Hallé et al., 1978). Architecturally modified plants can be planted at higher densities and support 

greater yields (Peng et al., 1999; Hedden, 2003) thereby reducing the requirements for land, water, pesticide, 

and fertiliser (Scorza et al., 1999; Scorza, 2005). A reduction in overall tree size can often result in a 

reduction in branch numbers and changes in branch orientation that can influence pruning and light 

penetrance (Scorza et al., 1984; Atkinson and Else, 2001). Despite the importance of plant architecture in 

other crop plants, information on growth habits and branching pattern in relation to fruiting habit and yield in 

jatropha is still limited. 

 

In Chapter 3, jatropha plant architecture was studied using the FBA model that takes into account fractal 

(self-repeating) branching architecture and measures branch length and diameter, in fractal relationship. The 

study found jatropha fruit only developed on certain productive twigs which we called fruit-bearing twigs. 
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These fruit-bearing twigs had a linear relationship between length and diameter, unlike the relationships of 

the other branch diameter categories. Fruit-bearing twigs are predominantly situated on twigs with lengths 

ranging from 4 cm to 65 cm and diameters ranging from 0.9 cm to 1.4 cm. Moreover, one fruit-bearing twig 

can bear multiple numbers of inflorescences or fruit clusters. For instance, once the first inflorescence has 

developed and set on the young twig, the twig continues to grow or elongate, producing consecutive 

inflorescences, while the section where the first inflorescence was initiated develops into fruit. 

 

In Chapter 4 we discussed the observation that the numbers of inflorescences or fruit clusters vary depending 

on plant age, management, and cropping systems used. Jatropha has short stem resulting from the multi-

stemmed growth habit and branching pattern showed sympodial growth with some dichasial and multiple 

branching. The branching pattern in this study follows the Leeuwenberg model (Hallé et al., 1978). The 

indeterminate nature of jatropha branching patterns has the potential to increase harvesting costs if the plants 

are not pruned to keep the plant height in check. 

7.2.1.3 Plasticity 

Jatropha planting material used in this study shows high heterogeneity or plasticity in the 

phenotypic/morphological characteristics. For example the FBA model produced variable results in the 

crown/canopy height and width. Some jatropha with wide crowns were underestimated while narrow crowns 

were overestimated. FBA measurements and schematic drawings on jatropha roots showed root structure 

modification such as intermediate branching pattern between herringbone and dichotomous patterns 

(Appendix 4). This is in response to differences in resources availability and intra and/or inter-plant root 

competition (Fitter et al., 1991). 

 

Variations in resource availability may be responsible for variations in yield, leafiness, and canopy shape 

between the two Sumbawa hedge studies. The two hedge studies were conducted at the same location, using 

the same planting material and treatments (75 cm height and planting distance of 10 cm), but planted on 

opposite sides of the field (Chapter 4). 

 

Research by others have identified large variations in jatropha genotypes that are not limited to vegetative 

characteristics such as plant height, stem diameter, number of branch, but also in the reproductive 

characteristics such as seed and oil yield (Ginwal et al., 2004; Rao et al., 2008; Shabanimofrad et al., 2013; 

Osorio et al., 2014; Tripathi et al., 2015). 

 

Although jatropha phenotypic characteristics show large variations, genetic variation or diversity of most 

jatropha genotypes assessed by various molecular (DNA) markers are relatively low or narrow, with the 

exception of genotypes from Central America (Chapter 1). Jatropha's narrow genetic diversity is likely due to 

propagation by cuttings (Achten et al., 2010e; Sanou et al., 2015), by selfing (Divakara et al., 2010; Negussie 
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et al., 2014) and apomixis (Chang-Wei et al., 2007; Achten et al., 2010e; Bressan et al., 2013; Sanou et al., 

2015). 

7.2.2 Intraspecific (tree-tree) and interspecific (tree-crop) interactions 

Resource capture of crop plants not only depends on genotype, but also on the interactions with neighbouring 

plants (intraspecies/intraspecific) or other crop plants (interspecies/interspecific). These interactions may be 

competitive or complementary depending on access and utilisation of soil water, nutrients, and light. The 

focus of resource capture in this study draws heavily on intercropping and monoculture. 

7.2.2.1 Above and belowground resources: competition or complementarity 

In Chapter 5, to reduce aboveground or light competition with maize, aboveground jatropha was managed 

with shoot pruning. The potential for leaf prunings as a by-product to benefit maize yield within the jatropha-

maize intercropping system were also explored. To assess the belowground competition, root 

pruning/trenching followed by vertical polythene root barrier installation was also performed. Assessment of 

above and belowground competition or complementarity effect of jatropha on maize was performed by 

measuring maize yield in intercropping and monocultures. Maize productivity under intercropping was 

analysed using simple empirical model developed by Ong (1995) and Ong (1996). In this model the 

interaction (I) of resource capture was determined as a function of fertility (F) and additive competition (C) 

components and expressed in terms of crop yields. 

 

My results showed that aboveground/shoot pruning was effective in managing aboveground competition for 

light. Moreover root pruning and root barriers also effectively managed competition belowground for soil 

water and nutrient. The results also show that jatropha leaf prunings applied as mulch for maize provided a 

limited, but positive fertility effect. Jatropha mulch not only improves soil fertility but also helps alleviate 

problems associated with soil saturation during high rainfall and minimises soil evaporation during low 

rainfall. In terms of quality, jatropha mulch is categorised as a high quality organic resource with immediate 

mineralisation potential, however the P content is quite low. The best interaction occurred when the F value 

was small and C had a negative value. A small F value indicated a soil that had no major nutrient limitations 

and an intercrop in competition balance. Ultimately it is light and soil moisture that determines if the 

interaction is to be positive or negative (Van Noordwijk et al., 1998). In general, competition only becomes a 

problem if it affects the desired outcome, albeit commercial or otherwise (Van Noordwijk et al., 1996). The 

results from this study agree with Sanchez (1995) and Giller (2001) who state that for tree and crop 

intercropping to be successful, soil fertility should be good and rainfall adequate. 

 

There is a disadvantage in using such a simple additive interaction model, as the sum of the components used 

in the equation (F and C) cannot cope with situations where two components/parameters interact. To 

understand the competition and complementarity in capturing water, nutrients, and light resources as results 

of management practices (e.g. fertilisation, pruning, and planting density) and cropping systems (e.g. 
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intercropping and monoculture), long-term performance of jatropha-maize intercropping where compared to 

monoculture scenarios using mechanistic model of WaNuLCAS (Chapter 6). Yields predicted from 

WaNuLCAS management scenarios were assessed for trade-offs between jatropha and maize by comparing 

jatropha and maize grown as intercropping and monoculture. The trade-off scenarios were assessed using 

Willey’s (1979) first scenario for yield advantage. This is where intercropping gives full yield of the main 

crop and some yield for the secondary crop. For this scenario two options were used. The first was to treat 

jatropha as the main crop and maize as the secondary crop with the aim of maximising jatropha yield. 

Currently, this situation is somewhat unlikely from a farmer’s perspective given the current commercial 

circumstances where jatropha yields and price are both low and uncertain (Van Eijck et al., 2014a). Given 

that this situation may change in future, there was however a need to consider this option. The second option 

was to treat maize as the main crop and jatropha as the secondary crop with the objective to maximise maize 

yield. This is the predominant situation for local farmers wishing to plant jatropha as a means of gaining 

extra income, minimising their risk or aiming for yield stability. 

 

The effects of jatropha interspecies resource competition with maize in intercropping and with gliricidia in 

mixed hedges, including the intraspecies resource competition within jatropha monoculture on yield were 

assessed in Chapters 4 and 6. In Chapter 4, the differences in inflorescence distribution between 

intercropping and monoculture may be due to the different ages and above and belowground competition. In 

monoculture, the jatropha is two-year-old and experienced aboveground intra-species competition. This 

resulted in increased flowering on new productive twigs. In intercropping, the jatropha is four-year-old and 

experienced above-ground inter-species competition with maize. Instead of allocating resources to new 

productive twigs for flowering, allocation was to flowering on the already existing productive twigs. 

Although this hypothesis has not been fully tested as we did not have a control of four year-old jatropha in 

the intercropping, it does raise some interesting issues and provides new insight into jatropha reproductive 

behaviour, highlighting a future direction for research. 

 

In Chapter 6, intercropping simulations of close jatropha inter-rows (high planting densities), showed that 

jatropha benefited from reduced soil evaporation and access to nutrients applied to the maize inter-row. 

Widening the jatropha inter-row may reduce light interception, soil water and nutrient access, but it 

ultimately reduces jatropha's capacity to compete with maize, and with neighbouring jatropha shrubs. 

Interspecific competition between jatropha and maize in this case was not a problem because the pooled 

yield effect was less than the intraspecific competition between jatropha. Losses in jatropha yield mean 

greater maize yields and this is especially important when socio-economic factors favour maize over 

jatropha. 

7.2.2.2 Water, nutrients, light capture and interactions 

The underlying concept of resource capture is that competitive or complementary interactions between 

species are dependent on the effective capture and utilisation of the most limiting growth resources 
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(Monteith, 1981; Monteith et al., 1994). This is a function of the conversion coefficient of the species 

involved, environmental influences and management practices as well as numbers, area, and distribution of 

above and belowground biomass (Ong et al., 1996). 

 

For example, in Chapter 6 competition for water and nutrients between jatropha and maize occur heavily in 

the first top 20 cm as jatropha RLD in that zone was greater than in the 20 cm below. However the 

combination of mulch72P, unpruned jatropha, and smallest inter-row (2 m) produced the best relative 

jatropha yield because N, P, and water uptake were the largest when compared with the other scenarios. 

Inter-row spacing of 2 m also had the least N leaching, probably for two reasons. Firstly, competition 

between jatropha and maize for belowground resources at 2 m inter-row would result in resources being used 

more efficiently. Secondly, jatropha roots grow deeper and have the potential to grow beneath the maize 

roots creating a ‘safety-net’ effect or filter function to capture N before it is lost. The ‘safety-net’ concept of 

Van Noordwijk et al. (1996) considers that deep rooting trees intercept nutrients which have leached below 

the crop rooting zone. The safety-net effect has already been tested in tropical alley cropping between maize 

and gliricidia, and with peltophorum in North Lampung, Indonesia (Rowe et al., 1999). Mulch72P and mulch 

also effectively reduces soil evaporation by minimising the impact of solar radiation, and by minimising soil 

surface air flow (Riha and McIntyre, 1999). Mulch72P had lower soil evaporation than mulch, possibly 

because the addition of P enhanced rooting close to the soil surface thereby increasing root water uptake 

(Riha and McIntyre, 1999). 

 

Competition for water and nutrients between tree and crop occur spatially, but also with phenology and age 

(Muthuri et al., 2005; Gao et al., 2013), especially during the crop growing period. For example, in Chapter 6 

different pruning scenarios have different implications for nutrient and water uptake of jatropha and maize. 

While no pruning gave the largest nutrient and water uptake for jatropha, pruning every year resulted in the 

smallest jatropha nutrient and water uptake. Therefore, competition belowground for water and nutrients 

with maize was reduced. 

 

Competition for light through shading is a key component of tree/crop interaction. Shading is influenced by 

environmental and plant factors such as tree leaf area, leaf phenology, crown structure and crown 

management (Ong et al., 1996). Pruning every year also reduced jatropha aboveground competition therefore 

maize light interception increased. If the annual crop is planted at the time the tree is pruned then above and 

belowground competition by the tree is minimised, and the crop can be established before the tree canopy 

has fully recovered (Jackson et al., 2000). For example, in Chapter 6 when jatropha is pruned every year, 

maize growth limitation by light interception (relative to maize monoculture) is only 2 % to 9 %. If jatropha 

is pruned at alternate years, the smallest inter-row limits potential maize growth by about 14 %, while the 

wider inter-row spacings only reduce yield by about 3 % to 9 %. If jatropha is not pruned, the smallest inter-

row spacing limits yield by about 40 %, while the wider spacing limits yield by about 4 % to 11 %. 
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In Chapter 4 when jatropha hedges were planted at wider spacing, yields increased. While the higher yields 

are likely due to increased access to soil moisture and nutrients, hedges are single row plantings therefore 

each plant already has unlimited access to resources either side of the planting. Close spacing might however 

lead to intraspecies root competition. The greater aboveground biomass for 20 cm jatropha-gliricidia 

plantings may be due to positive interactions between the jatropha and gliricidia. Gliricidia is a nitrogen 

fixing tree that can increase nitrogen and organic matter availability through leaf and root turnover (Giller, 

2001). It is important to remember that jatropha hedges are planted as protection barriers and not for yield. 

7.2.3 Management 

While there are no standardised jatropha management practices currently available, resource management 

strategies for this thesis focused on fertiliser application, pruning, and plant spacing and in doing so provide 

a valuable source of information. 

7.2.3.1 Fertiliser application 

Fertiliser applications in this study were performed only in jatropha intercropping systems, and not in 

monoculture or hedge plantings. This is consistent with Indonesian jatropha intercropping farming practice. 

Discussions with farmers confirmed the long-term use of jatropha hedges; planting was easy as they use 

cuttings and no fertilisers are used. Farmers also indicated that given current yields and seed price it was not 

economically profitable to fertilise jatropha. 

 

Jatropha leaf mulch incorporated into the jatropha inter-row (maize alley) effectively provided N at 91 kg N 

ha-1, sufficient to meet maize requirements, but supplied only a small amount of P (6.2 kg ha-1) necessary for 

high yields. Additional P was added for field experiments (Chapter 4 and Chapter 5) and compared with 

mulch + P applied at 72 kg ha-1 (mulch72P) in the management simulation. The results showed a major 

portion of N added from the mulch was tied up in the soil organic matter and some may have been lost 

through leaching. Overall mulch is beneficial in the long-term soil fertility as it improves the level of organic 

N in the soil (Palm, 1995). In Chapter 6 simulations for maize monoculture and intercropping scenarios show 

that the addition of jatropha leaf prunings as mulch or mulch + P applied at 72 kg ha-1 (mulch72P) can 

effectively increase jatropha and maize long-term productivity. 

 

The simulation highlighted that the most limiting factor for jatropha was water, while for maize it was N. 

The results are understandable as maize has been bred for high yield with high nutrient demand, especially 

N, therefore if N is limited; growth and yield are low and will decline over time. Jatropha on the other hand 

is a perennial with a longer lifespan and has yet to achieve the level of breeding that exists in maize. 

Breeders will most certainly need to consider these consequences when breeding for improved yields. 

Jatropha does have an advantage over maize in that its roots are able to utilise a larger volume of 

belowground resources (Van Noordwijk et al., 1996). This is especially true if jatropha is well established 

prior to the maize planting. Jatropha that has never been pruned will have an extensive root system that 
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allows it to capture resources from a larger area (Ong et al., 1996). While the jatropha parameterisation in 

this study is not from high-yielding varieties, the results do show some adaptation to the local environment, 

and to the poor soil fertility. 

 

Our simulations are in line with studies that show the addition of P in combination with organic matter can 

increase maize N and P uptake and consequently lead to higher maize yields (Wyatt, 1982; Kwabiah et al., 

2003; Das, 2014) in intercropping as opposed to monocultures (Akinnifesi et al., 2007; De Jongh and 

Nielsen, 2011). Applications of N, P, K have been shown to increase growth and yield in jatropha 

monocultures (Laviola and Dias, 2008; Yong et al., 2010; Mohapatra and Panda, 2011; De Oliveira Borges 

and Ribeiro, 2014). However, during the hype jatropha was promoted as crop plant that had a low nutrient 

requirement and was able to thrive in marginal lands. For this reason, many jatropha plantings belonging to 

the smallholder farmers in Indonesia were planted in marginal lands and not fertilised. With the low yields 

and prices for jatropha seed it is clear that there was no advantage to be gained from fertilising jatropha 

monoculture plantings. There is however an advantage to be gained in fertilising the jatropha/maize 

intercropping system as jatropha roots received an added benefit from fertiliser applied to the maize intercrop 

alley (Chapters 4, 5 and 6). While jatropha has been shown to respond well to fertiliser applications (Laviola 

and Dias, 2008), the specifics of these responses are not well understood, and the optimum levels of 

inorganic fertilisers vary with age (Achten et al., 2008). 

7.2.3.2 Pruning 

Prior to this study it was assumed that shoot pruning would increase the numbers of new branches and 

promotes new inflorescence development. Our results however show that not all new jatropha branches 

produced inflorescences (Chapters 3 and 4). Jatropha inflorescences develop at the ends of the (new) 

branches and pruning induces branching, leading to a belief that more branches equals more fruit (Gour, 

2006; Brittaine and Lutaladio, 2010; Everson et al., 2013), larger yields and improved HI. On the other hand 

the already productive twig/branches may increase their number of inflorescence clusters. Despite an 

extensive literature search, no studies were found that assess the effects of pruning on twig/branch 

productivity. 

 

The shoot pruning for this study was a top prune with final height of 0.75 m aboveground which is a 

common practice in Indonesia (field observations), India (Ghosh et al., 2011; Singh et al., 2013), South 

Africa (Everson et al., 2013), and Thailand (Suriharn et al., 2011). In Chapter 4, the effect of shoot pruning 

was assessed in combination with root pruning (+ polythene root barrier) and mulch treatments on jatropha 

seed yield and vegetative plant components. Shoot and root pruning reduced jatropha seed yield substantially 

regardless of mulch treatments; however it did not reduce vegetative plant components significantly. It is 

possible that shoot pruning offset the reduction caused by root pruning as shoots and roots are interconnected 

(Geisler and Ferree, 1984). Shoot pruning alone also offers a convenient way to manage belowground 

biomass/competition and likewise, root pruning also affects shoot biomass/competition (Geisler and Ferree, 
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1984; Van Noordwijk et al., 1996). The root pruning removed belowground competition between jatropha 

and maize; however the addition of polythene plastic barrier reduced soil volume for maize root growth in 

the outer rows. Consequently, maize yield did not increase as much as anticipated. 

 

Further, shoot pruning in monoculture jatropha reduced vegetative growth and yield in comparison to no 

pruning, and the contribution of plant components to yield determination was changed. The plant component 

that contributed to yield before pruning was plant height and after pruning it was the numbers of productive 

twig and LAI. In the intercropping system of four-year-old jatropha, the plant component that contributed to 

yield after shoot pruning was number of inflorescence clusters. Intercropping under root pruning/mulch 

treatments showed a shift in the distribution of inflorescence clusters when compared with the monoculture. 

The differences in inflorescence distribution between intercropping and monoculture may be due to different 

age and above and/or belowground competition with maize. In hedge systems, the plant component that 

contributed to yield after pruning was plant height. 

 

Simulations in Chapter 6 showed that pooled results for pruning scenarios (i.e. pruning at alternate years, 

every year, and not pruning) do not show substantial differences. However, if we compare the pooled results 

for pruning scenarios with jatropha monoculture for the different pruning and planting density scenarios, we 

see greater differences between pruning at alternate years and pruning every year, and for no pruning. 

Moreover, a previous study showed that two-year-old jatropha monoculture grown without external inputs, 

and at a plant spacing of 2 m × 2 m, and pruned to a height of 75 cm, reduced yield by 75 % compared with 

no pruning (Chapter 4). 

 

Other jatropha monoculture studies with pruning treatments also show yield reductions when compared with 

no pruning treatments, although the degree of yield reductions varied with age, management practices (plant 

spacing, pruning heights, and fertiliser), and the environment (Ghosh et al., 2011; Singh et al., 2013). Root 

pruning is a common practice in tree-crop alley cropping to remove belowground competition between tree 

and crop (Hairiah et al., 1992; Rao et al., 2004; Wajja-Musukwe et al., 2008) and in orchards to control fruit 

tree growth and size (e.g. dwarfing) (Geisler and Ferree, 1984; Ferree et al., 1992; Khan et al., 1998). 

Jatropha shoot and root pruning research is limited and no pruning standards exist; however, the examples 

above show that pruning is not the only factor influencing yield in intercropping or monoculture. Pruning in 

combination with fertiliser and planting density can also change relative jatropha and maize yield 

relationships. 

7.2.3.3 Plant spacing 

Plant spacing is a powerful tool for managing shoot and root interactions. Biophysically, optimal spacing and 

planting arrangement depend on finding a balance between two conflicting objectives: the maximisation of 

root development within the soil and nutrient cycles, and minimal resource competition with others. 
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In Chapter 6, jatropha planting density simulations for monoculture showed as density increased, jatropha 

yield decreased. Singh et al. (2013) suggested for monoculture that a density planting of 2,500 plants per ha 

(2 m × 2 m spacing) would be the optimal starting point for plantations under rain fed conditions. Thinning 

or removing rows or individuals of relatively weak performance may be necessary. 

 

In jatropha-maize intercropping, the pooled planting density results show that although jatropha yield 

dominates maize, variations in planting density can change jatropha intra and interspecific competition. 

Resource capture for light, soil water and nutrients between jatropha and maize is influenced by planting 

density. In intercropping simulation, at small inter-row or high planting densities, jatropha benefited from 

reduced soil evaporation and nutrient access provided by maize. 

 

Results of field research for jatropha monoculture plantings at different spacing scenarios are quite variable, 

even within one location or between multi-locations (Singh et al., 2013) and indeed between researchers 

(Ghosh et al., 2007b; Behera et al., 2010). This is due to the variations and interactions of M with G and E. 

In jatropha-kikuyu grass (Pennisetum clandestinum) silvopastoral systems, manipulation of jatropha 

arrangement/configuration without changing the planting density had no consistent effects on jatropha 

productivity (Ghezehei et al., 2015). This is important as it highlights the possibility that plantings can be 

arranged to suit individual requirements. 

7.3 Biophysical constraints, challenges, and opportunities 

Ultimately commercial jatropha cultivation aims to maximise yield and like any new crop, development is 

often handicapped by a lack of understanding of the biophysical factors necessary for success. The 

biophysical constraints, challenges and opportunities are outlined. 

7.3.1 Constraints 

The expectation that jatropha would provide high yields even on marginal and dry lands without inputs such 

as irrigation, fertilisers, and pesticide was at the least somewhat naive. While the overall understanding of 

jatropha growth and development is improving, there remains a significant amount of research necessary to 

develop high yielding varieties suitable for areas that do not compete with existing food crops and minimise 

environmental impacts. At the moment this lack of elite planting material is the most limiting factor. In 

addition to this are the issues of water availability and associated stress that limits jatropha growth and yield. 

Jatropha planted under such conditions will potentially be more predisposed to pests and diseases attack. 

7.3.2 Challenges 

At present yields are in the order of 2 t ha-1 (Achten et al., 2008; Van Eijck et al., 2014a) while global 

prediction is circa 5 t ha-1 (Achten et al., 2014). Factors responsible for low yields have been documented as 

low sex ratio which varies significantly among genotypes (Chang-Wei et al., 2007; Kaur et al., 2011; Ahoton 

and Quenum, 2012); asynchronised flowering and fruiting maturation (Fairless, 2007; Rao et al., 2008; 

Abdelgadir et al., 2010; Brittaine and Lutaladio, 2010; Ahmad and Sultan, 2015), pests, diseases, and water-
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logging susceptibility, and phorbol esters toxicity (Achten et al., 2010e; Divakara et al., 2010; Carels, 2013). 

These factors provide researchers with a multitude of research possibilities; however some degree of 

research synergy would be beneficial. 

 

The jatropha conventional breeding programme in Indonesia still has a long way to go in producing high 

yielding varieties. Conventional jatropha breeding started in 2005 with exploration, collection, evaluation, 

and selection of jatropha germplasm. Breeding for all accessions was achieved through repeated negative 

mass selection to attain improved populations (IP). So far, these selections have produced three populations 

that have been released as National Jatropha curcas L. improved populations, IP-1A (from Asembagus – 

East Java), IP-1M (from Muktiharjo - Central Java) and IP-1P (from Pakuwon - West Java). In 2007, the 

third cycle of selection resulted IP-3A, 3M, and 3P that has yield potential greater than the first and second 

cycles. Yield potential for the first to third cycles is said to be 1 t ha-1, 2 t ha-1, and 3 t ha-1, respectively 

(Heliyanto et al., 2008). These yield figures were based on assumption and may not reflect reality. In 2007 to 

2010 selected jatropha parents were crossed and the progenies were evaluated resulting in nine potential 

genotypes that have undergone multi-locations trials in Indonesia. In these multi-location trials, Purwati et al. 

(2015) found significant interaction yield responses between genotypes and the environment over a 3-year 

period. Genotypes which produced good seed yields in one environment did not always produce high yields 

in others. In these cases the genotype was considered to be more adapted to the specific location or 

environment. The average of the best genotype still only yielded about 1 t ha-1 with oil content above 35 %. 

 

A review of the jatropha conventional breeding progress by Yue et al. (2013) found many institutions are 

progressing with testing and evaluation. This takes time, as it is necessary for jatropha to mature so that 

growth and development, especially flowering and fruiting can be assessed. Research is also concentrating 

on germplasm collection, characterisation, and evaluation of the existing diversity of phenotypic and 

genotypic variations. As jatropha's rotational age can be as long as 40 years (Dias et al., 2012) a balance has 

to be found between rotation age and delayed returns on investment (Dias et al., 2012; Spinelli et al., 2015). 

This aspect is challenging. 

 

Management is another aspect that poses multiple challenges for growers. Harvesting fruit from unpruned 

jatropha is more labour intensive while regular pruning is labour demanding and may not be easily accepted. 

Further field research is required to determine optimal pruning techniques and indeed if jatropha is even 

capable of tolerating regular pruning and the effects this might have on the above and belowground biomass. 

Ultimately it comes down to the yield combinations that result from fertiliser, pruning, and plant spacing and 

which of these fit best with farmers’ objectives of high total revenue per hectare relative to cultivation costs 

and market prices. 

 

Contrary to the claim that jatropha is tolerant to pests and diseases, research reports varying levels of 

occurrence. This is despite jatropha's toxic nature and insecticidal properties (Anitha and Varaprasad, 2012; 
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Machado and Pereira, 2012; Terren et al., 2012). Pest and disease attacks did occur in my study; however 

they were manageable using readily available pesticides and fungicides. Potentially the effectiveness of 

jatropha chemical defences may be compromised due to abiotic stress (Kozlowski et al., 1991; Kozlowski 

and Pallardy, 1997) therefore care will need to be taken. 

 

Jatropha is similar to other undomesticated perennials in that it maximises vegetative growth in the early 

years and bears fruit only when the plants have matured. Fruiting usually occurs on the upper and outer parts 

of the plant so shading by adjacent plants may be a potential issue (Jackson, 1989). Although FBA produced 

variable results in jatropha biomass, the model provided some insight into jatropha growth habits, branching 

patterns, fruit-bearing twigs, and allocation of jatropha biomass to fruit, leaf, branch, stem, and roots. Further 

research will be necessary to improve jatropha's commercial potential. 

7.3.3 Opportunities 

Despite the numerous constraints and challenges that impact jatropha, there are many windows of 

opportunities. 

7.3.3.1 Plant characteristics 

This study found that the allocation of aboveground biomass to fruit needs further research, especially into 

the different growth habit, branching patterns, or plant architecture in relation to increasing the numbers of 

productive twig/branch and number of inflorescences per productive branch. Based on this knowledge 

appropriate breeding and selection goals and management techniques to maximise seed yield can be 

developed. 

 

Jatropha breeding will need to address the requirements for the different cropping systems. For example the 

essential difference between hedges and monoculture/intercropping is that yield is not the primary objective 

for planting hedges. If hedges are expected to be both protective and productive then it raises a series of 

different issues that need to be addressed. Molecular breeding using -omics strategies will play a major role 

in any future breeding programme. 

 

Results have shown that overexpression of jatropha Flowering Locus T (FT) homologue gene produces 

transgenic jatropha with early flowering time and higher yield in a shorter time (Li et al., 2014a; Ye et al., 

2014a). Overexpression of glycine betaine produces transgenic jatropha with increased drought tolerance 

(Tsuchimoto et al., 2012) and overexpression of SbNHX1 (vacuolar Na+/H+ antiporter gene that maintains 

ion homeostasis) produces transgenic jatropha with increased salt tolerance (Joshi et al., 2013). RNAi 

silencing in JcFAD2-1 gene (responsible for the production of linoleic acid) produces marker-free transgenic 

jatropha with increased high quality seed oil (Qu et al., 2012). RNAi silencing in the curcin gene creates 

transgenic (Patade et al., 2014) and marker-free transgenic jatropha (Gu et al., 2015) with curcin-deficient 

non-toxic seeds and in casbene synthase homologue genes to create transgenic jatropha with reduced phorbol 
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esters in seed (Li et al., 2015). There are now marker-free transgenic jatropha that show resistance to larvae 

of tortix moth (Archips micaceanus) that feed on jatropha leaf as it expresses Bacillus thuringiensis (Bt) δ-

endotoxin (Gu et al., 2014). Transgenic jatropha have been produced with resistance to jatropha mosaic 

disease caused by a geminivirus strain of Indian cassava mosaic virus (ICMV) as the homologue key genes 

in ICMV are silenced (Ye et al., 2014b). 

 

The above examples show characteristics or traits consistent with seed and oil yield. Other secondary traits 

that may have correlation with seed and oil yield are seed size (Kaushik et al., 2007b), female to male flower 

ratio, plant height, number of branches (Rao et al., 2008), stem diameter, branch length (Kumar et al., 2008; 

Das et al., 2010; Shabanimofrad et al., 2013), canopy area and volume (Srivastava et al., 2011; Wani and 

Chander, 2012). There are many other desirable traits that are considered important such as biotic (pests and 

diseases) stress resistant, abiotic (drought, salinity, water-logging) stress tolerance, flowering and fruiting 

synchronisation, oil quality, low or no phorbol esters (Divakara et al., 2010; Johnson et al., 2011). Exploiting 

natural variation, in particular the use of non-toxic varieties will likely open up more debate on the socio-

economic aspects including the food versus fuel issue. 

7.3.3.2 Resource capture 

Jatropha is reputed to be a drought tolerant species, however when grown for commercial gain this has 

proven not to be the case. Jatropha normally shed their leaves gradually when confronted with drought. 

These leaves have a higher adaxial stomatal density. This controlled shedding allows the jatropha to balance 

leaf water loss during drought (Holl et al., 2007; Maes et al., 2009; Achten et al., 2010d; Everson et al., 

2013). This is interesting from a water planning perspective as it seems that jatropha is unlikely to compete 

for scarce water resources, however growing trees to produce biodiesel is complex and will vary by region 

and country (Everson et al., 2013). Research into water requirements, productivity, and use efficiency, 

especially on jatropha monoculture system is on-going. In essence understanding the magnitude and 

dynamics of the different components of the jatropha water balance is crucial to the development and 

management of sustainable water and nutrient resources. The objective after all is to increase jatropha 

biomass and HI while reducing transpiration. 

 

Jatropha nutrient requirements are a potential area of opportunity. Jatropha adapts to low fertility soil for 

survival growth, however for commercial purposes soil fertility will play an important role if yield potential 

is to be realised. The incorporation of jatropha mulch into the soil has been shown to be advantageous, 

especially for intercropping systems. This aspect, which has the potential to help farmers to increase yields, 

improve the soil biota, and reduce costs, will require further research. 

 

While research onto the effects of water and nutrients on jatropha is accumulating, research into light 

interception, conversion and use, and relative productivity is still limited. Biomass or dry matter production 

has already been linearly related to accumulated light interception for potatoes (Solanum tuberosum L.), 
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sugar beet (Beta vulgaris), barley (Hordeum vulgare L.), apple (Malus pumila M.) (Monteith, 1977), onion 

(Allium cepa L.) (Brewster et al., 1986), willow (Salix alba L.) (Cannell et al., 1987), and evergreen forest 

stands (Linder, 1985). From field observations by Ghosh et al. (2011) it seems that jatropha branches require 

exposure to sunlight in order to bear flowers and fruit. If this is correct then research is needed to examine 

the relationship between light interception and jatropha productivity. The effects of light distribution, 

intensity, and quality within the canopy and upon flowering and fruit production and synchronisation, the 

possibilities and limitations of canopy manipulation for the optimum utilisation of light by selection of 

genotype (e.g. growth habit and branching patterns), pruning, and plant spacing will also need to be 

evaluated. 

7.3.3.3 Management 

Management of jatropha growth and development is another area where research is lacking. Jatropha has 

been shown to respond well to fertiliser applications (Laviola and Dias, 2008), however the specifics of these 

responses are not well understood and the optimum levels of inorganic fertilisers do vary with age (Achten et 

al., 2008). Site-specific fertiliser trials will need to be established for trees of different ages and over a 

number of seasons (Brittaine and Lutaladio, 2010) and possibly for different genotypes. The incorporation of 

leaf biomass from prunings incorporated into the soil as mulch has been shown to provide a limited, but 

positive fertility effect. Further research will be required to determine quality and quantity combinationa 

using other mixtures (e.g. maize/agricultural residues, jatropha pressed seed cake), including optimal 

application times and rates. 

 

Plant architecture is an interesting area of opportunity as lessons can be learnt from fruit orchards where 

management is used to change the plants' partitioning of resources from vegetative to reproductive (Jackson, 

1989). Shoot pruning techniques have been used successfully in fruit trees to maximise yields using 

formative pruning to create a strong framework to support heavy fruit loads, and maintenance pruning to 

remove superfluous vegetative growth and promote generative growth (Brunner, 1990; Grossman and 

DeJong, 1998; Van Eijck et al., 2010). Techniques include open-centre crown (vase shape) pruning for 

peach, nectarine, and plum trees (Brunner, 1990; Grossman and DeJong, 1998), and spindle crown (central 

leader) pruning for apple and pear trees (Brunner, 1990). Coffee is another example where selective pruning 

and grafting of productive horizontal (plagiotropic) branches with shorter internodes and high numbers of 

fruit clusters has been successful (Anim-Kwapong and Adomako, 2010; Gichimu and Omondi, 2010). The 

suitability of these pruning techniques for improving yield in jatropha remains to be investigated. 

 

Managing plant architecture or tree size with pruning involves aboveground (shoot) belowground (root) 

pruning. Our study showed no difference in shoot growth and development irrespective of whether the roots 

were pruned or not. The effect of shoot or root pruning on monoculture and hedge systems however may 

need further research to determine if they will respond in a similar manner. 
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Tree training builds a strong and permanent branch framework and encourages increased axillary bud 

development and the production of vertical branches is a possibility for jatropha. Research on the training of 

jatropha branches is limited; however the branch training through bending is a common practice by local 

growers at one of the jatropha sites in Indonesia. The locals believe that bending jatropha branches will 

encourage flowering and fruiting. The branches that grow vertical or oblique are bent to approximately 50° 

to 70° so that they exhibit plagiotropic like growth. This bending was performed in both monoculture and 

intercropping systems once jatropha was one to two-years-old. This process is repeated multiple times while 

the jatropha branches were still young and relatively pliable; the process did not break the branches. The 

local bending is done manually, without supporting wires or poles for support, and without the knowledge of 

tree form. While no research data is available to determine if bending by smallholder farmers results in 

higher seed yields, research by (Ping et al., 2012) has confirmed that branch angle significantly influenced 

sprout number and distribution, the type of sprout and the fruit bearing capacity per inflorescence of 

jatropha. This is an opportunity for future research. 

 

Dwarf rootstock and grafting are other fruit orchard techniques that might have potential for preferential 

determinate growth and high seed and oil yield. Jatropha grafting research has already been performed, 

however these did not specifically use dwarf rootstock with the aim of reducing scion vigor, or increase fruit 

biomass. The grafting research used interspecies rootstock of J. gossypifolia and J. pohliana with the 

intention of exploring propagation methods (De Resende et al., 2012), to increase longevity and abiotic stress 

resistance (Panghal et al., 2013; Cholid et al., 2014), and to increase root rot resistant (Dhillon et al., 2009). 

One et al. (2014) produced semi-dwarf to dwarf architecture in jatropha genotypes by crossing Jatropha 

curcas with Jatropha integerrima, however improving yield was not the objective of their research. 

 

There may also be some potential for modifying the jatropha perennial habit to be treated as annual and 

accelerate cultivar improvement time schedules. A number of perennial crop plants have been modified by 

selection to the extent that they are now commonly treated as annuals. This is the case for cotton and tomato 

(Lycopersicon spp.), and is increasingly the case for strawberry (Fragaria × ananassa) (Jackson, 1989) and 

castor (Singh, 1976). The overall advantages of the perennial habit are largely to do with competition and 

survival whereas the disadvantages are those of the maintenance energy requirements of the perennial parts 

and the likely build-up of pests and diseases (Jackson, 1989). 

 

Plant growth regulators (PGRs) offer opportunities to promote branching and improve flowering and yield. 

Paclobutrazol (PBZ) is a PGR that improved flowering and fruiting in pruned shrubs and partially made up 

for the yield loss as well as reducing plant height with smaller leaves and enhanced chlorophyll and nitrogen 

(Ghosh et al., 2011). PBZ once optimised could significantly reduce unwanted vegetative growth, with a 

concomitant improvement in yield and seed oil content of jatropha. Ghosh et al., (2010) showed that PBZ 

was capable of increasing seed yield by 1,127 % relative to controls from one unproductive jatropha 

germplasm. PBZ treatments greatly retarded vegetative growth and improved reproductive growth. Xu et al. 
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(2013) reported that the lengths of new branches were greatly decreased, and the number of fruits per 

inflorescence, fruit-bearing branches per tree, and total fruit load per tree increased. 

 

Benzyl adenine (BA) has been shown to increase the total number of flowers per inflorescence. Furthermore, 

BA treatments induced bisexual flowers, which were not found in control inflorescences, and a substantial 

increase in the female-to-male flower ratio. Consequently, a 4.5-fold increase in fruit number and a 3.3-fold 

increase in final seed yield were observed in inflorescences (Pan and Xu, 2011). Foliar applications of BA 

significantly increased branches in both the pot and field trials compared to manual pruning (Abdelgadir et 

al., 2009), producing more flowers per plant, more fruits per bunch, and heavier and bigger fruits and seeds 

with more oil compared to manual pruning (Abdelgadir et al., 2010). Thidiazuron has also been reported to 

increase fruit numbers in jatropha by promoting pistil development which significantly increased the number 

of female flowers along with the development of inflorescence meristems, reversed stamen abortion and 

female flowers and induced bisexual flowers, which largely depends on the development stage of the 

inflorescence meristems (Pan et al., 2016). Future PGR studies must focus on accurate chemical delivery to 

the target tissue ensuring maximum results with minimum environmental contamination. 

7.4 Lessons learnt from the hype and disappointment 

Production and use of biofuels has experienced remarkable growth over the last decade; however jatropha 

performance has been very disappointing despite claims of drought tolerance, low nutrient requirements, 

pests and diseases resistance, high yields, poverty reduction, and high returns on investment, all on marginal 

land (Chapter 2). Jatropha has failed to achieve these expectations, possibly even bringing misery to millions 

of the world's poorest people (Kant and Wu, 2011). Ebrahim and Baker (2012a) put it rather aggressively 

stating that it was difficult to imagine a more inappropriate crop for resource-poor farmers. 

 

Governments, academia and university research and their funders, private companies, and NGOs were all 

instrumental in fuelling the hype, each for their own reasons. Our assessment of the jatropha hype and 

disappointment highlights the possibility that many government policies were based on selective or ignored 

evidence to suit political agendas, rather than on scientific evidence. Our review further highlights the 

complex relationships that exist between evidence and policy, how governments operate and how research is 

funded and results are used. It is inevitable that no matter how much caution is advised there will always be 

entrepreneurs prepared to face the risks in an effort to capitalise on the rewards associated with new crops 

and early entry. In essence jatropha is a new crop and it needs people and funds to develop and promote it. 

Yet promotion based on a multitude of unfounded claims has not lead to a commercially successful jatropha 

production and biodiesel industry. 

 

I conclude from Chapter 2 that realistic commercial development of jatropha biodiesel requires not only a 

well performing jatropha crop based on plant characteristics, systems productivity, and management (Section 

7.3). It also needs well developed and implemented market pull factors of society, economy, environment 
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and government support in terms of blending targets, subsidies, land allocation, and incentives to investors. 

Furthermore it requires the technology push factors of oil processing and value adding. Essentially these 

factors were either absent or weakly implemented and there were many mismatches in timing and aligning of 

push and pull factors. Furthermore, future profits were anticipated in marginal lands available for jatropha 

cultivation; high yielding jatropha seeds; high value by-products derived from press cake; and carbon credits. 

Combined with the lack of any long-term commitment or legal framework to protect industry participants, 

confidence in jatropha eroded. 

 

The review of the factors responsible for the jatropha hype and disappointment provides us with the 

opportunity to learn from the mistakes of the past and to gain valuable insights into a potential future of 

jatropha for biodiesel. Key aspects emerging from the literature on the role of policy are: 

 

 Governments should, in view of the long term relevance of biofuel, eliminate fossil diesel subsidies 

and allow market pricing: this will reduce fossil fuel consumption and free up government resources 

that could be effectively used for the further development of biofuels. Higher fossil fuel prices make it 

easier for biofuels to be competitive. It could be further argued that the removal of biofuel mandates 

should also be considered as there is no evidence to suggest that the economics of the biofuel industry 

is likely to change in the foreseeable future. 

 Governments and industry should work together to develop an effective and efficient supply chain that 

stimulates and aligns all stages of the jatropha biodiesel process; from seed production through oil 

processing to the consumer. Each stage must be considered with regard to economics, technology, 

social and legal aspects, and the environment. The supply chain should ideally provide a win-win 

situation for all with benefits shared equally. 

 Seed and oil producers and distributors must be encouraged to work actively with small producers and 

locally owned cooperatives so that they can all share equally in the economic gains and as such 

contribute to rural development. 

 Foreign investors must be regulated by governments to minimise project failures and missed 

opportunities for wage earnings and revenue generation. Realistic and legally binding contracts must 

be made mandatory for large plantation projects as part of their official business plans, in particular 

land agreements to protect land holders. 

 Information transparency and law enforcement is necessary, especially where there is a history of 

corruption. National and local governments could for instance consider the detailed accounting of 

jatropha production from both producers and buyers and make this information freely available in the 

public domain. This will help in detecting those investors who seek only short-term funding gains. 

When aiming for the engagement of smallholders, governments and industries need to follow the rules 

of free prior informed consent regarding land allocation to jatropha to prevent potential land conflicts. 
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In re-assessing their regulatory and support mechanisms regarding the development of biofuel markets and 

infrastructure, governments can enforce and/or reform their policies already in place. My review further 

emphasises that there needs to be a comprehensive evaluation of past research to clearly identify and develop 

strategies for any and all outstanding or contradictory issues. Policy and decision makers must have a clear 

understanding of the consequences and trade-offs of pursuing jatropha biodiesel to avoid doing more harm 

than good to the community and the environment. The following key research domains have therefore been 

identified: 

 

 There is an urgent need for improved genetic material with known yield characteristics over a wide 

range of climatic and agro-ecological conditions. This will require extensive plant breeding and 

molecular strategies to investigate systematically and scientifically jatropha’s potential. Associated 

research on management will be needed to be able to reap the benefits from the improved varieties. 

 The human welfare dimensions of jatropha production and use, and the role it can play needs to be 

understood. The impacts of jatropha expansion and the pressure and competition for limited resources 

are also important; particularly where deforestation or the loss of food crops is involved. 

 A proper land classification system that identifies land suitable for jatropha (and similar crops) needs 

to be developed. Suitability may imply land with characteristics allowing for large jatropha yields, 

which may be on current fertile crop land, grazing land, irrigated areas or nature areas. Suitability may 

also imply land that is suitable because it has no or low productive land use, such as ‘marginal or 

underutilised’ lands. Allocation of suitable lands to bioenergy crops can then form the basis of 

political decisions that take into account the value of alternative land uses. 

 Research into mechanisation is required. Jatropha mechanisation might help to minimise or resolve 

conflicts arising from competition between jatropha and food crop labour. 

 Continued research into jatropha oil quality and quantity is required to target higher value markets. 

The potential for jatropha by-products needs further investigation and analysis to determine cost 

effectiveness, sustainability and market possibilities. It will be important to ensure that where multiple 

benefits are claimed, that there will be no conflicts in regard to land degradation or in water-limited 

environments when additional biomass is removed. 

 Sound technical and agronomic jatropha advice and support capable of maximising the efficient and 

effective use of resources whilst minimising the impact on the environment and biodiversity must be 

developed, documented and distributed. The environmental aspects of jatropha biodiesel production 

and use must be assessed in terms of its impact on GHGs emissions. 

 

Jatropha is in essence a new crop and with that must come the realisation that time is needed for commercial 

development. If we look in detail at any of the successful new crops we become very aware that 

domestication is a long-term process. Unfortunately the true extent of their perceived ‘overnight success’ is 
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not always acknowledged, appreciated or understood, a fact that seems to have been overlooked when 

considering jatropha as a commercial crop. 

 

Cereals such as wheat (Triticum spp. L.), rice and maize for example all have long histories of domestication 

through on farm selection; however it is only since the early years of the 19th century that real improvements 

have been made using conventional and molecular breeding techniques (Lupton, 1987). Oil palm is another 

more recent addition to the long list of wild plants now domesticated crops only becoming a commercially 

viable crop in 1902 (Hartley, 1988). In some ways it might be considered unfair to compare jatropha with 

food crops; it might be a more realistic comparison to use non-food crops such as rubber and cotton, 

although the breeding histories are shorter. 

 

There is no disputing that the successful development of new crops has major economic implications for the 

world economy. The challenges are how to use plant breeding to produce high yielding, high quality crops 

with resistance to pests, diseases and environmental stresses while satisfying business challenges, research 

and development obstacles, production problems, quality and processing issues, and policy issues. To 

achieve commercial success these all need to be bought together in a cohesive and efficient way. 

 

Another aspect important to the success of jatropha, but often fraught with emotion and accompanied by a 

distinct lack of rational thinking is the food versus fuel debate. There is a heavy focus on jatropha for its 

claimed ability to perform in marginal areas, thus avoiding the conflict associated with food crop 

competition. It is now a well-established fact that jatropha in its current form does not produce high yields on 

marginal lands; to do so generally requires extensive inputs. The question then becomes one of why exclude 

jatropha from fertile soils? Jatropha has the potential to be a cash-crop like cotton or rubber (Hevea 

brasiliensis M.) which are both equally non edible but seem to be well accepted and not seen as a threat to 

food production. The same could be argued for all non-food crops grown on fertile land. 

 

It is clear that this study highlights the many concerns that need to be addressed before a viable jatropha 

based biodiesel industry can be developed. While not directly involved in producing food, jatropha has the 

potential to make substantial contributions to society through biodiesel and high value by-products derived 

from press cake; and carbon credits. From this perspective there is no rational reason to exclude jatropha 

production from fertile soils, especially when it has the potential to provide farmers with an income to 

sustain or improve their socioeconomic status. 

7.5 Concluding remarks 

The jatropha experience provides valuable insights into the future of jatropha and any similar ‘silver bullet’ 

new crops or technologies that may emerge in the future. From the biophysical perspective there is a need for 

high yielding jatropha varieties. There is also an urgent need for a simple and reliable production and 

management system that maximises commercial potential, but not at the expense of the environment. 
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The potential for jatropha intercropping is high, especially if management practices such as fertiliser, 

pruning, and planting density are considered. While this study has focussed on maize as the intercrop this 

may not be the only possibility. For the jatropha-maize combination it has been shown that different 

management practices can reduce jatropha and maize competition and/or enhance complementarity. Our 

results show that if the objective is to maximise jatropha yield, then maize yield suffers, and vice versa. 

 

Clearly there is no single, generic or even correct solution. Growers must blend the best available choices to 

maximise plant growth and development relative to their location and circumstances. No matter how skilled 

the grower if the seed produced cannot be sold profitably because the market calls for different 

characteristics, then the planting material must be changed. Breeding programmes must be flexible enough to 

accommodate change; however the problem becomes one of reaction time. 

 

An assessment of trade-offs will always be necessary due to the multiple objectives that exist within any 

production and management system. The reality is that it simply comes down to what combinations provide 

the highest total revenue per hectare relative to production and management costs and market prices. The 

difficult part is to know where to start developing a jatropha biodiesel system. We need people and resources 

to start developing the crop, the supply chain and markets, so we need exposure, attention and promotion. 

However promoting business or smallholder investments based on unfounded expected benefits has proven 

not to lead to viable biodiesel development, but only to successful capture of subsidies by some policy 

entrepreneurs and professional ‘innovation’ investors. 

 

While the continued development of alternative energy strategies is crucial and must concentrate on finding a 

balance between energy needs, socioeconomic conditions and the environment, based on our study we 

currently cannot promote jatropha based biodiesel. With the current uncertainty that surrounds jatropha 

yields and its socioeconomic benefits, jatropha will remain a minor player in tropical landscapes for a variety 

of uses, and it should not be promoted as a smallholder or plantation crop. 

 

Only when the identified policy and research concerns presented in Section 7.4 have been addressed will a 

well performing jatropha crop in a suitable cropping system be able to generate socioeconomic and 

environmental benefits that will be conducive to a successful jatropha biodiesel industry in the future. This 

study provides the reader with the background necessary to contribute to such a future. 
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Appendices 

Appendix 1: Methods: FBA field measurements. 

 

The FBA protocol required the development of a fractal tree model based on the natural form of the tree with 

each section or internodes referred to as links. Links were individual sections of wood (stem), branch, or 

twig between two branching points. For aboveground, the initial link was the wood (diameter ≤ 7 cm), and 

the stem divides into branches (diameter from 2 cm to 6.99 cm) and twigs (diameter ≤ 1.99 cm) to form the 

crown. These links allow length-diameter scaling relationships to be determined. Tree stem lengths varied 

from 2 cm to 40 cm from soil surface therefore DBH normally used for developing the tree allometric 

equation was replaced with stem base diameter measured at the middle of stem height. Belowground 

biomass was determined in much the same manner as for aboveground, except that proximal root 

measurements were used. Proximal roots had wood root (diameter ≥ 2 cm), branch roots (diameter from 0.5 

cm to 1.99 cm), and twig roots (diameter < 0.5 cm). FBA simulated only root biomass of one proximal root 

therefore a summation was necessary to estimate total proximal root biomass. 

 

Prior to biomass determination, schematic diagrams were prepared for all aboveground branching patterns 

with field data measurements for diameter and length links. Accuracy required two measurements for each 

data point, the second measure at 90 degrees to the first and at three link points, proximal, middle, and distal. 

The main stem is link 0, the next link 1, and subsequent offspring numbered sequentially as link 2 and link 3 

until all links were completed. Data collection included leaf numbers and fruit for each link. To ensure 

reliable estimates data were collected for a minimum of 100 branching point for each tree as recommended 

by Van Noordwijk and Mulia (2002). 

 

To calculate biomass it was necessary to determine the probability distributions of p and q. The scaling 

factor for p is a transfer coefficient that denotes a change in total cross-sectional area at branching points. 

This was calculated as the ratio between sum of squared diameters before and after branching. The scaling 

factor for q is an allocation coefficient that denotes relative size of the largest link at a branching point. This 

was calculated as the ratio between the largest squared diameter after branching and sum of squared diameter 

after branching.  

 

Prior to biomass determination, schematic diagrams were prepared for all belowground branching patterns. 

Collection of field data for link diameter and length was in a manner similar to that for aboveground. 

Belowground FBA uses proximal root terms that have the same meaning to lateral or horizontal root terms. 

This study uses proximal root term when explaining the model and uses lateral root when explaining other 

researchers’ findings. Root diameter and length data recording started with the first proximal root and 

continued for a minimum of 100 links. Horizontal proximal roots are 0 to 45 degrees angle from soil surface 

and vertical proximal root as more than 45 degrees. 
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Appendix 2: Statistical criteria for model evaluation result (Loague and Green, 1991). 

Criterion Symbol Formula Range Optimum 

Maximum error ME  ≥ 0 

Root mean square RMSE  ≥ 0 

Coefficient of determination CD  ≥ 1 

Modelling efficiency EF  ≤ 1 

Coefficient of residual mass CRM  ≤ 0 
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Appendix 3 Schematic drawing of an unpruned 4-year-old showing above and belowground architecture 

following FBA numbering. 
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Appendix 4: Distribution of p (top) and q (bottom) factors as a function of link diameter. 

 

 
Distribution of p (top) and q (bottom) factors as a function of link diameter. The horizontal line in p 

represent a conservation of cross sectional area across a branching point (p = 1).The horizontal line in q 

represents a perfect fork (q = 0.5). 
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Appendix 5: Aboveground or shoot link length and diameter relationship for twig, branch, and wood 

categories. 
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Appendix 6: Allometric constants and scaling coefficients for taproot of 10 jatropha. 

 

Least trimmed squared 

(LTS) 
Taproot 

a 0.01802 

b 1.33340 

R2 0.94000 

p <0.00010 

cf 1.55600 

cf = correction factor. 
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Appendix 7: FBA parameterisation for above and belowground. 

Parameters Units Shoot Root 

Simulation type Root or shoot - 1.000 0.000 

Range of simulation D low cm 5.000 2.000 

 D high cm 15.000 10.000 

Branching pattern Number of branching - 2.010 2.170 

 How is p generated in the model - 0.000 0.000 

If generated with Cauchy Locality parameter - 0.876 1.313 

 Scale parameter - 0.163 0.332 

If non-parametric p <0.5 - 0.050 0.010 

 p 0.5 < p < 0.75 - 0.180 0.030 

 p 0.75 < p <0.9 - 0.270 0.070 

 p 0.9 < p < 1.1 - 0.210 0.160 

 p 1.1 < p < 1.25 - 0.100 0.120 

 p > 1.25 - 0.180 0.610 

q distribution is non-parametric p 0.5 < q < 0.6 - 0.360 0.180 

 p 0.6 < q < 0.7 - 0.300 0.190 

 p 0.7 < q < 0.8 - 0.210 0.180 

 p 0.8 < q < 0.9 - 0.120 0.200 

 p 0.9 < q < 1.0 - 0.020 0.250 

Diameter Average D min cm 0.433 0.150 

 Range D min cm 0.100 0.360 

Link length Single L-D relationship? - 0.000 0.000 

If yes Intercept cm 15.810 17.366 

 Slope cm 0.810 0.569 

 Range L - 0.086 0.115 

If no then for class ‘twig’ Intercept cm 15.990 16.213 

 Slope cm 0.000 0.000 

 Range L - 0.00041 0.751 

For class ‘branch’ Intercept cm 21.980 16.444 

 Slope cm 0.000 0.000 

 Range L - 0.121 0.973 

For class ‘wood’ Intercept cm 11.640 10.925 

 Slope cm 0.000 0.000 

 Range L - 0.440 0.738 
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Appendix 7 continued. 

Parameters Units Shoot Root 

Woody part Twig density g cm-3 0.306 0.489 

 Branch density g cm-3 0.324 0.368 

 Wood density g cm-3 0.336 0.260 

 Twig diameter cm 2.000 0.500 

 Branch diameter cm 7.000 2.000 

Final links Length bare tip cm 0.000 0.000 

 D high density cm 1.099 0.499 

 D zero density cm 1.260 0.700 

 Leaf density cm-1 0.429 0.279 

Leaves Specific leaf area cm-2 g-1 140.442 140.442 

 Leaf area cm-2 61.619 61.619 

 Leaf area index - 4.118 4.118 

Fine roots Fine root length cm 3.000 4.744 

 Specific root length cm g-1 30000 548.470 

Additional parameters Linear or logarithmic step? - 1.000 1.000 

 Number of iteration - 100 100 

 Random seed - 62240 62240 

Tapering coefficient with Cauchy Locality parameter for twig cm 0.024 0.005 

 Locality parameter for branch cm 0.024 0.010 

 Locality parameter for wood cm 0.042 0.050 

 Scale parameter cm 0.035 0.018 

 Allow thickening? - 0.000 0.000 

Main stem Intercept cm 11.640 10.925 

 Slope cm 0.000 0.000 

 Range L - 0.440 0.738 

Fruits D high density fruit cm 1.483 0.970 

 D zero density fruit cm 0.902 1.590 

 Fruit density cm-1 0.010 0.100 

 Fruit dry weight g 3.200 3.200 
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Appendix 8: Tree growth characteristics applied in the model. 

Parameters Units Jatropha 

Growth stage Length of vegetative cycle Days 365 

 Length of generative cycle Days 30 

 Earliest day to flower in a year 
Julian 

day 
305 

 Latest day to flower in a year 
Julian 

day 
195 

 Initial stage - 0.1 

 Stage after pruning - 1 

 Maximum growth rate kg m-2 0.0035 

Growth Fraction of growth reserve - 0.025 

 Leaf weight ratio - 0.58 

 Specific leaf area m2 kg-1 14.04 

 Water requirements for dry matter production 1 kg-1 252 

 Tree growth follows Rubber tree rules? - 0 

Fruit Fruit growth follows Oil Palm rules? - 0 

 Fraction biomass allocated to fruit - 0.125 

Crown Maximum crown height above bare stem m 1.938 

 Ratio between crown width and height - 1.094 

 Maximum crown radius m 3.032 

 Maximum leaf area index - 4.554 

 Ratio leaf area index minimum and maximum - 0.200 

Light capture Growth - 1 

 
Relative light density at which shading start to affect tree 

growth 
- 0.7 

 Extinction light coefficient - 1 

Rain 

interception 
Rainfall water stored at leaf surface mm 0.00001 

Tree water Coefficient related to tree root conductivity cm day-1 -1000 

 Plant potential for maximum transpiration cm -3000 

 Plant potential for minimum transpiration cm 0.00 
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Appendix 8: Continued. 

Parameters Units Jatropha 

N fixation Type of N2 fixation - 0.00 

 Proportion of N from atmosphere - 0.00 

 Fraction of reserve pool for N2 fix - 0.00 

 Dry weight cost for N2 fixation - 0.00 

 Responsiveness of N2 fixation to N stress - 0.00 

N concentration N concentration in carbohydrate reserves g g-1 0.22 

 N concentration in leaf component g g-1 0.0261 

 N concentration in twig component g g-1 0.0068 

 N concentration in wood component g g-1 0.0034 

 N concentration in fruit component g g-1 0.0177 

 N concentration in root development g g-1 0.0151 

 Lignin fraction of pruned biomass - 0.1683 

 Lignin fraction of root - 0.1395 

 Polyphenol fraction of litter fall - 0.0371 

 Polyphenol fraction of pruned biomass - 0.0314 

 Polyphenol fraction of root - 0.0968 

Allometric branching Apply allometric equation? - 1 

(Above ground) Intercept for total biomass equation kg 0.0090 

 Power for total biomass equation cm-1 2.583 

 Intercept for branch biomass equation kg 0.0088 

 Power for branch biomass equation cm-1 2.267 

 Intercept for leaf & twig biomass equation kg 0.0085 

 Power for leaf & twig biomass equation cm-1 2.121 

 Intercept for litter fall equation kg 0.001 

 Power for litter fall equation cm-1 2.583 

 Wood density Kg m-3 336.334 

Roots Root tip diameter cm 0.1 

 Maximum root length density in layer 1 – zone 1 cm cm-3 0.0356 

 Maximum root length density in layer 1 – zone 2 cm cm-3 0.9075 

 Maximum root length density in layer 1 – zone 3 cm cm-3 0.7878 

 Maximum root length density in layer 1 – zone 4 cm cm-3 0.00 

 Maximum root length density in layer 2 – zone 1 cm cm-3 0.00 

 Maximum root length density in layer 2 – zone 2 cm cm-3 0.1960 

 Maximum root length density in layer 2 – zone 3 cm cm-3 0.4964 
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Appendix 8: Continued. 

Parameters Units Jatropha 

 Maximum root length density in layer 2 – zone 4 cm cm-3 0.00 

 Maximum root length density in layer 3 – zone 1 cm cm-3 0.00 

 Maximum root length density in layer 3 – zone 2 cm cm-3 0.0853 

 Maximum root length density in layer 3 – zone 3 cm cm-3 0.0815 

 Maximum root length density in layer 3 – zone 4 cm cm-3 0.00 

 Maximum root length density in layer 4 – zone 1 cm cm-3 0.00 

 Maximum root length density in layer 4 – zone 2 cm cm-3 0.00 

 Maximum root length density in layer 4 – zone 3 cm cm-3 0.0382 

 Maximum root length density in layer 4 – zone 4 cm cm-3 0.00 

 

  



Appendices 

194 

Appendix 9: Crop growth characteristics applied in the model. 

  Parameters Units Maize 

Crop Stage  Length of generative stage days 40 

  Length of vegetative stage days 60 

Annual or Perennial? Is it annual crop? 1=yes, 0 = no - 1 

  Earliest day to flower in a year  Julian day 1 

  Latest day to flower in a year  Julian day 365 

Crop Growth  Production of dry matter per day kg (m-2day-1) 0.014 

  Seed weight kg m-2 0.004 

  Water requirement for dry matter production l kg-1 300 

  Ratio of height increment to biomass incr. m kg-2 7 

  Maximum proportion of crop biomass 

remobilized as  

storage component 

1 day-1 0.05 
  

Light Capture  Extinction light coefficient - 0.65 

  Relative light intensity at which shading 

starts to  

affect crop growth 

- 1 
  

Canopy  Maximum Leaf Area Index - 5 

Rain Interception  Rainfall water stored at leaf surface mm 1 

Water Uptake  Hydraulic conductivity of roots cm day-1 1.0E-05 

  Maximum plant potential  cm -5000 

  Minimum plant potential  cm -15000 

Nutrient Uptake  Canopy biomass for closed canopy  kg m-2 0.2 

  N concentration in crop tissue - 0.01 

  P concentration in crop tissue - 0.0025 

  N concentration in young crop biomass - 0.015 

  P concentration in young crop biomass - 0.007 

  N concentration in roots - 0.01 
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Appendix 9 continued. 

  Parameters Units Maize 

N Fixation  N fixation  Type of N2 fixation - 0 

 Constant Proportion of N from atmosphere - 0 

 Responsive  

to N stress 
Responsiveness of N2 fix. to N stress - 1 

 

  Fraction of reserve pool for N2 fix.  1 day-1 0.1 

  Dry weight cost for N2 fixation 
kg(DW) g-

1(N) 
0.01 

  Parameters Units Maize 

Root All root type Root tip diameter cm 0.02 

 Root type 0 Max. root length density in layer1 cm cm-3 5 

  Max. root length density in layer2 cm cm-3 3 

  Max. root length density in layer3 cm cm-3 0.3 

  Max. root length density in layer4 cm cm-3 0 

 Root type 1 Total root length per unit area cm cm-2 100 

 
Root types 

    1 & 2 
Decrease of root with depth 1 m-1 7 

 Root type 2 Length per unit root dry weight m g-1 200 

  Root half life days 50 

  Root affected by water or nutrient stress - 2 

  Root distribution by depth in good uptake - 1 

Mycorrhizal fraction Fraction of roots infected by mycorrhiza - 0.25 

Crop effects on nutrient mobility Reduction of constant P by root activity mg cm-1 0.00 

  Relative transfer rate for N pool cm2 day-1 0.00 

  Relative transfer rate for P pool cm2 day-1 0.00 

Litter Quality  Lignin fraction of crop residue - 0.20 

  Lignin fraction of crop root residue - 0.20 

  Polyphenol fraction of crop residue - 0.00 

  Polyphenol fraction of crop root residue - 0.00 

Soil Erosion  Crop cover efficiency factor - 0.30 

 

  



Appendices 

196 

Appendix 9 continued. 

  Parameters Units Maize 

Sensitivity to pest damage Fraction of crop eaten by pigs - 0.00 

  Fraction of crop eaten by monkeys - 0.00 

  Fraction of crop eaten by locust - 0.00 

  Fraction of crop eaten by nematode - 0.00 

  Fraction of crop eaten by goat - 0.00 

  Fraction of crop eaten by buffalo - 0.00 

  Fraction of crop eaten by birds - 0.00 

Agronomic Yield Standard moisture content - 0.15 
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Summary 

Jatropha has been hailed as a miracle biofuel crop, yet there is a little scientifically-sound information to 

support these claims. The majority of the claims were based on optimistic assumptions rather than on fact, 

especially where yield is concerned. Claims that jatropha could produce high yield (12 t ha-1 yr-1 with 

averages of around 5 t ha-1 yr-1) on poor soils resulted in hype and venture capital started to flow and projects 

commenced. When it became clear that actual yields were on average only around 0.1 to 1 or 2 t ha-1 yr-1 the 

hype turned to disappointment. There were early warnings advising caution; yet it seems these were largely 

ignored, buried or overtaken by the wave of hype.  

 

My modified Gartner hype and disappointment cycle (Chapter 2) highlights the fact that this is not the first 

time that jatropha has experienced hype; in fact jatropha has been through multiple hype cycles dating back 

to 1945-50. The disappointment observed during the first hype could simply be attributed to a very specific 

need that was no longer required. The second and subsequent cycles share many similarities and resemble 

other miracle new crops. In essence it was in fact a combination of market pull (society, economy, 

environment and government mandates, subsidies, land allocation, and investors) and technology push 

factors (oil processing and value adding) that were not sufficiently well prepared or developed, and 

implemented within the framework and guidelines necessary for realistic commercial development.  

 

From the JARAK research in Indonesia which aimed to separate fact from fiction in the development of 

jatropha as a new biodiesel crop, it is clear that jatropha hype was used by many to exploit the system. 

Policies were often influenced by a network of powerful entrepreneurs who manipulated the process for 

personal gain. Companies and NGO’s were able to access subsidies or bank loans and investment funds to 

develop large or smallholder jatropha plantations, while brokers successfully managed to get a piece of the 

subsidy cake. Researchers were able to access numerous research funds. While smallholders were often 

depicted as victims of land grab there were many who joined in the exploitation of jatropha. In hindsight it is 

easy to see why the jatropha hype ended in disappointment. 

 

This PhD thesis is the result of the plant production component of the JARAK programme. The thesis 

hypothesis is that jatropha growth and yield were limited by a lack of understanding of plant characteristics, 

cropping systems, and management. The overall aim was therefore to understand the above-and 

belowground biomass allocation and harvest index using a functional branch analysis (FBA) model based 

approach that included plant architecture. To then use this knowledge to evaluate growth and yield in the 

monoculture, hedge, and intercropping systems with different management options that can be incorporated 

into the water, nutrient and light capture in agroforestry systems (WaNuLCAS) model to determine long-

term productivity and trade-off analysis. 

 

This study was based on field experiments in Indonesia from 2011 to 2013 and was conducted at two 

separate locations. Monoculture and intercropping studies from 2012 to 2013 in Mulo Village in the 
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Wonosari District, Gunungkidul Regency of Special Province Yogyakarta. A hedge study was conducted 

from 2011 to 2013 in Leseng Village in Moyo Hulu District, Sumbawa Besar Regency, Nusa Tenggara 

Barat. 

 

To increase our understanding of the complexity and relationship between jatropha biomass and its 

allocation/partitioning to various plant parts the FBA model was used. Using the key elements in FBA 

measurements it became apparent that fruit-bearing twigs occurred predominantly on branches that have 

diameter from 0.9 cm to 1.4 cm, and that not all twigs produced fruit. To capture jatropha plasticity or 

heterogeneity including the short, multi-stemmed growth habit, adjustments to fine-tune the FBA model 

were required to determine aboveground biomass. Jatropha roots were found to have storage capacity which 

resulted in the belowground biomass prediction having greater bias than actual. Throughout the study 

allometric equations were produced and used in preference to destructive sampling to determine biomass. 

Interestingly and according to the FBA criteria, the jatropha in this study are categorised as shrubs and not 

trees. Overall the study of jatropha biomass using the FBA model produced variable results depending how 

well the plant architecture fitted the model (Chapter 3). 

 

Allometric equations from the FBA were used to determine jatropha aboveground biomass from 

monoculture, intercropping, and hedge cropping systems, including direct measurements of other plant 

vegetative components and yield. Jatropha yield was then determined from several management practices 

(e.g. aboveground/shoot and belowground/root pruning and incorporation of jatropha leaf as mulch) in 

combination with the three cropping systems. Monoculture produced the largest yield, followed by 

intercropping, and hedges. Variations in yield were not only due to cropping system selection, but also to 

planting material age and management practices. Shoot pruning in two-year-old monocultures reduced yield 

from 109 kg ha-1 to 28 kg ha-1 due to a 40 % decrease in canopy volume and LAI. In four-year-old jatropha 

intercropped with maize, root pruning and root barriers reduced yields 80 % by limiting jatropha root access 

to soil moisture and nutrients in the maize plantings. Intercropping without root barriers and with leaf mulch 

produced the largest yields of 25 kg ha-1. In hedge plantings, plant height and planting density influenced 

yield. Single rows of one-year-old jatropha produced 0.97 g m-1 at 10 cm spacing, 1.69 g m-1 at 30 cm, and 

0.14 g m-1 for 20 cm of mixture of jatropha- and the nitrogen-fixing legume tree Gliricidia sepium. Pruning 

significantly decreased LAI with 20 cm spacing indicating a higher proportion of above-ground biomass was 

allocated to wood growth. Seed yield for the three cropping systems can be determined by plant height and 

numbers of productive twigs, although number of inflorescence clusters per productive twig may be more 

important. Cutting all branches back to 75 cm above-ground as a pruning technique reduced yields. This 

effect may be due to interactions between genotype, planting age, and soil water and nutrient availability. 

Available soil water and the addition of soil nutrients favours yield as observed for pruned trees in the 

intercropping experiment. If hedges are to be considered as viable options for jatropha seed production, 

growers will need to consider lower planting densities and nutrient management (Chapter 4). 
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Intercrop interactions between jatropha and maize were assessed using a simple additive linear equation 

where interaction equals fertility plus competition effects. An increase in fertility was produced by the 

addition of mulch improving soil fertility and effectively modifying the micro-environment by reducing soil 

evaporation and lowering soil temperature. Competition effects between above and belowground biomass 

were managed through shoot pruning and root pruning and root barriers respectively. For the competition 

interaction to have positive net benefit soil fertility must be good and rainfall adequate. However, empirical 

tree-crop interactions pose a problem as the equation is not able to handle two interacting components at the 

same time (Chapter 5). 

 

Long-term jatropha and maize productivity was explored over a 20-year period using the WaNuLCAS 

model. Relative jatropha and relative maize yields were evaluated in response to different combinations of 

fertiliser, pruning, and planting density. Intercropping performance was characterised by production 

possibility frontier (PPF) with attention to two specific points; maize yield when jatropha yield is maximised 

and jatropha yield when maize yield is maximised. Fertiliser for the maize crops included mulch with P 

applied at 72 kg ha-1, mulch, N and P applied at 40 kg ha-1, and a no-fertiliser no-mulch (control). Pruning 

scenarios included no pruning, pruning every year and pruning alternate years. Planting density comprised 

14 combinations generated from five intra-rows (1 m to 5 m) and four inter-row (2 m to 5 m) spacings. Our 

results show application of mulch with P applied at 72 kg ha-1 gave the maximum yield for both jatropha and 

maize. Jatropha maximum relative yield of 250 % of a non-fertilised sole crop plus a relative maize yield of 

35 % was obtained from no pruning with a 2 m inter-row spacing when compared with monocultures. 

Maximum maize relative yield of 101 % and a jatropha relative yield of 62 % of the sole crop were obtained 

from pruning every year. Inter-row distance did not affect maize yield when jatropha was pruned each year. 

There is considerable scope for jatropha and maize intercropping, especially when fertiliser, pruning, and 

planting density management is considered. Different management practices can reduce jatropha and maize 

competition and/or enhance complementarity, responding to shifting farmer priorities within the PPF. There 

remains however a yield trade-off due to the multiple objectives that exist within any intercropping system. 

If the objective is to maximise jatropha yield, then maize yield suffers, and vice versa. Ultimately, it comes 

down to the yield combinations of fertiliser, pruning, and plant spacing that provide the highest total revenue 

per hectare relative to production costs and market prices. The shape of the PPF established in this study 

differed from common theory when the farmer’s practice was used as a reference (Chapter 6). 

 

Finally, the general discussion brings together the main findings, their implications, and limitations. My 

review of the jatropha hype and disappointment cycle clearly shows that jatropha is now in the reality phase. 

It will be important that any strategies developed be designed to foster energy development and improve 

socioeconomic conditions so as to instil the confidence necessary to once again adopt jatropha. The 

biophysical results from this study highlight a need for high yielding jatropha varieties suitable for areas that 

do not compete with existing food crops. Production management systems that maximise commercial 

potential will also need to be developed, but not at the expense of the environment. Our jatropha - maize 
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intercropping results show that different management practices such as fertiliser, pruning, and planting 

density can reduce competition and/or enhance complementarity. Popular belief is that if the objective is to 

maximise jatropha yield, then maize yield suffers, and vice versa, although this may not be the full story. 

While intercropping with maize has been the study focus there may be other more suitable crops. In essence 

there is no single, generic or even correct solution so for growers to maximise plant growth and yield relative 

to their location and circumstances, they must understand that trade-offs are a necessary part of any multiple 

objective system. In reality for farmers it is simply yield and what combinations will provide the highest 

return on investment. Irrespective of how skilled the grower, if the planting material does not perform then 

breeding programmes must be flexible enough to accommodate change. The problem becomes one of 

reaction time. 

 

The yield and social benefit uncertainties outlined in our study confirm that jatropha should not be promoted 

as a smallholder or plantation crop. Only when the underlying causes of the jatropha hype and 

disappointment have been addressed and satisfied will we see improved commercial performance and 

socioeconomic conditions and environmental concerns conducive to a successful jatropha biodiesel industry 

(Chapter 7). 
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Samenvatting 

Jatropha is aangeprezen als een wondergewas voor biobrandstof maar er is slechts weinig wetenschappelijke 

literatuur beschikbaar dat de claims onderbouwt. Optimistische opbrengst schattingen waren aannnames, 

geen feitelijke waarnemingen. De claim dat Jatropha opbrengsten van 12 t ha-1 jaar-1 met gemiddeldes rond 5 

t ha-1 jaar-1 mogelijk waren op arme gronden resulteerde in een rage fase, waarin investeringen op gang 

kwamen en projecten van start gingen. Toen duidelijk werd dat feitelijke opbrengsten gemiddeld 0.1 tot 1 of 

2 t ha-1 jaar-1 waren, ging de rage over in teleurstelling. Er waren al vroeg aanwijzingen t die tot 

voorzichtigheid maanden, maar die werden grotendeels genegeerd, toen de rage golf eenmaal in beweging 

gekomen was.  

 

Mijn aangepaste Gartner model voor de rage en teleurstellings fase (Hoofdstuk 2) benadrukt dat dit niet de 

eerste keer was dat Jatropha to een rage leidde; meerdere rage cycli gaan terug tot de periode 1945-50. De 

teleurstelling van de eerste rage cycluswas toe te schrijven aan een specifieke behoefte aan producten die 

verdween toen andere oplossing voorhanden kwamen. De tweede en volgend rage cycli hebben 

eigenschappen gemeen met andere ‘wonder’ gewassen. De combinatie van markt-gedreven vraag 

(maatschappelijk draagvlak, economie, milieu en beleidsdoelstellingen, subsidies, landgebruiksrechten en 

beleggers) en technologisch aanbod (olie verwerking, toegevoegde waarde) waren onvoldoende 

voorbereid,ontwikkeld en afgestemd op de richtlijnen voor een realistische bedrijfsmatige commerciele 

ontwikkeling.  

 

Het JARAK onderzoeksprogramma in Indonesia dat tot doel had om feiten boven water te krijgen over de 

werkelijke mogelijkheden van jatropha as grondstof voor biodiesel, heeft duidelijk gemaakt dat de jatropha 

rage door velen gebruikt werd om hun eigen doelen te bereiken ten koste van het systeem. Beleid werd 

beinvloed door een netwerk van machtige investeerders die het proces uitbaatten voor eigen gewin. 

Bedrijven en NGO’s hadden toegang to subsidies, bank leningen en beleggings fondsen om grootschalige 

jatropha plantages op te zetten of kleine boeren tot productie aan te zetten, terwijl kennis en advies bedrijven 

een deel van de subsidie cake bemachtigden.  Voor onderzoekers was er toegang tot onderzoeksfondsen. 

Terwijl kleine boeren vaak als slachtoffers van ‘landje pik’ worden afgeschilderd, waren er velen die aan de 

jatropha uitbating deelnamen. Terugblikkend is het makkelijk te zien waarom de jatropha rage op een 

teleurstelling uitdraaide.  

 

Dit proefschrift is gebaseerd op de gewasproductie component van het JARAK programma. De basis 

hypothese van het proefschrift was dat de groei en opbrengst van jatropha werden beperkt door een beperkt 

begrip van planteigenschappen, teeltsystemen en management. De algemene doelstelling was allereerst de 

boven- en ondergrondse verdeling van biomassa over de diverse organen, en dan met name de fractie die 

naar de vruchten gaat, te begrijpen met behulp van een modelmatige aanpak gebaseerd op plant architectuur, 

de zogenaamde “Functional Branch Analysis” (FBA). Vervolgens werd deze kennis gebruikt om de groei en 

de opbrengst van jatropha in monocultuur, mengteelt en heg systemen te voorspellen bij gebruik van 
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verschillende management opties. Hierbij werd een model (WaNulCAS) gebruikt voor de benutting van 

water, nutriënten en licht in agroforestry systemen om inzicht te krijgen in de lange-termijn productie en 

interactie tussen systeem componenten en functies.  

 

De studie was gebaseerd op veldexperimenten in Indonesië van 2011 tot 2013 en werd uitgevoerd op twee 

verschillende locaties. Monocultuur en mengteelt studies van 2012 tot 2013 in het dorp Mulo in Wonosari 

District, Gunungkidul Regency van de Speciale Provincie Yogyakarta. Een heggen studie werd uitgevoerd 

van 2011 tot 2013 in het dorp Leseng in Moyo Hulu District, Sumbawa Besar Regency, Nusa Tenggara 

Barat Provincie. 

 

Om ons begrip te vergroten van de complexiteit en de relatie tussen jatropha biomassa en de verdeling over 

verschillende plantendelen werd het FBA-model gebruikt. Uit de FBA metingen bleek dat vruchtdragende 

twijgen met name voorkwamen op takken met diameters van 0,9 cm tot 1,4 cm, en dat niet alle twijgen 

vruchten produceerden. Om recht te doen aan jatropha plasticiteit en heterogeniteit, met inbegrip van de 

korte, meerstammige groeiwijze, moest het FBA model aangepast worden om met hoge precisie de 

bovengrondse biomassa te bepalen. Jatropha wortels bleken grote opslagcapaciteit te hebben waardoor model 

aanpassing noodzakelijk was omdat de initieel voorspelde waarde van de ondergrondse biomassa een grotere 

bias had dan de werkelijke waarde. Gedurende het verdere onderzoek werden allometrische vergelijkingen 

afgeleid met FBA gebruikt om biomassa te bepalen, in plaats van destructieve bemonstering. Interessant 

voor bepaalde beleidsdiscussies is dat volgens de FBA criteria Jatropha in deze studie gecategoriseerd is als 

struik en niet als boom. De studie van jatropha biomassa met behulp van het FBA model produceerde 

wisselende resultaten, afhankelijk van hoe goed de plant architectuur bij het model paste (Hoofdstuk 3). 

 

Directe metingen van vegetatieve componenten en opbrengst samen met allometrische vergelijkingen 

gebaseerd op stamdiameter werden gebruikt om bovengrondse biomassa in jatropha monocultuur, mengteelt 

en heg systemen te bepalen. De jatropha opbrengst werd vervolgens bepaald voor verschillende management 

praktijken (bijv snoei van bovengrondse scheuten en ondergrondse wortels en gebruik van jatropha blad als 

mulch) in combinatie met de drie teeltsystemen. Monocultuur produceerde de hoogste opbrengst, gevolgd 

door mengteelt en heggen. Variaties in opbrengst hingen niet alleen af van de selectie van teeltsysteem, maar 

ook van leeftijd van het plantmateriaal en management praktijken. Snoei van scheuten in twee-jarige 

monoculturen verminderde de opbrengst van 109 kg ha-1 tot 28 kg ha-1 door een 40% daling in kroon volume 

en blad-oppervlakte index (LAI). In vier jaar oude jatropha in mengteelt met maïs, verminderden wortel 

snoei en wortel barrières de jatropha opbrengsten met 80 % door het beperken van de toegang van de 

jatropha wortels tot bodemvocht en voedingsstoffen in de maïs aanplant. Mengteelt zonder wortel barrière en 

met blad mulch produceerde de grootste jatropha opbrengst van 25 kg ha-1. In heg aanplant werd opbrengst 

beïnvloed door planthoogte en plantafstand. Enkele rijen van één jaar oude jatropha produceerden 0,97 g m-1 

bij 10 cm afstand, 1,69 g m-1 bij 30 cm en 0,14 g m-1 voor een plantafstand van 20 cm in mengteelt van 

jatropha met de stikstofbindende vlinderbloemige boom Gliricidia sepium. Snoeien leidde tot een significant 
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lagere LAI bij een plantafstand van 20 cm hetgeen wijst op een grotere toewijzing van de bovengrondse 

biomassa aan houtgroei. Zaadopbrengst voor de drie teelten kan worden bepaald door planthoogte en het 

aantal productieve twijgen, hoewel het aantal clusters van bloeiwijzen per productieve twijg belangrijker kan 

zijn. Afsnijden van alle takken tot 75 cm boven de grond als snoei techniek verminderde de opbrengsten. Dit 

effect kan het gevolg zijn van interacties tussen genotype, planten leeftijd en de beschikbaarheid van water 

en voedingsstoffen in de bodem. Beschikbaar bodemwater en de toevoeging van voedingsstoffen lijken 

opbrengsten te bevorderen zoals geobserveerd werd in de gesnoeide bomen in het mengteelt experiment. 

Mochten heggen als haalbare opties voor jatropha zaadproductie overwogen worden, dan moeten telers 

lagere plantdichtheden en actief nutriëntenbeheer overwegen (Hoofdstuk 4). 

 

Interacties tussen jatropha en maïs in mengteelt werden beoordeeld met behulp van een eenvoudige additief 

lineaire vergelijking waarin interactie het resultaat is van effecten via bodemvruchtbaarheid en concurrentie. 

Een verhoging van de bodemvruchtbaarheid werd bereikt door het toevoegen van mulch, leidend tot 

verbetering van bodemvruchtbaarheid en het effectief veranderen van de micro-omgeving door het 

verminderen van bodemverdamping en verlagen van de bodemtemperatuur. Concurrentie tussen boven en 

ondergrondse biomassa werd gemanaged door respectievelijke snoei van scheuten en wortels en aanleg van 

barrières in de wortel zone. Om een positief netto voordeel te hebben van de interactie, moeten 

bodemvruchtbaarheid goed en regenval voldoende zijn. Empirische boom-gewas interacties vormen een 

probleem omdat de vergelijking geen twee interacterende componenten tegelijkertijd kan voorspellen 

(Hoofdstuk 5). 

 

Jatropha en maïs productiviteit op de lange termijn werden onderzocht over een periode van 20 jaar met 

behulp van het WaNuLCAS model. Relatieve jatropha en relatieve maïs opbrengsten werden geëvalueerd in 

reactie op verschillende combinaties van bemesting, snoeien en plantdichtheid. Mengteelt prestaties werden 

gekenmerkt door een productiemogelijkhedencurve (PPF) met aandacht voor twee specifieke punten; 

opbrengst van maïs als jatropha opbrengst wordt gemaximaliseerd en jatropha opbrengst wanneer opbrengst 

van maïs wordt gemaximaliseerd. De gebruikte meststoffen voor maïs gewassen bestonden uit mulch plus 72 

kg P ha-1, mulch zonder meststoffen, 40 kg N en 40 kg P ha-1, en een geen-bemesting geen-mulch 

behandeling (controle). Snoeiscenario’s bestonden uit geen snoei, snoei elk jaar en snoei om het jaar. 

Plantdichtheid bestond uit 14 combinaties gegenereerd op basis van vijf binnen-rij (1 tot 5 m) en vier tussen-

rij (2 tot 5 m) afstanden.  

 

Maximale opbrengsten voor zowel maïs als jatropha werden verkregen met mulch en 72 kg P ha-1. Een 

relatieve Jatropha opbrengst van 250 % vergeleken met een onbemeste monocultuur en een relatieve maïs 

opbrengst van 35 % werden verkregen in een ongesnoeide jatropha bestand met 2 m afstand tussen de rijen. 

Maximale relatieve maïs opbrengst van 101% en een relatieve jatropha opbrengst van 62 % van de 

monocultuur werden verkregen bij jaarlijks snoeien. Rijafstand had geen invloed op opbrengst van maïs als 

jatropha elk jaar werd gesnoeid. Er zijn veel mogelijkheden voor jatropha-maïs mengteelt, vooral als 
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kunstmest, snoeien en plantdichtheid als management maatregelen in aanmerking genomen worden. 

Verschillende management praktijken kunnen de concurrentie tussen jatropha en maïs verminderen en/of 

complementariteit verhogen, in reactie op verschuiving van boeren prioriteiten binnen de PPF. Er blijft 

echter een afruil in opbrengsten als gevolg van de vele doelstellingen die bestaan in ongeacht welk mengteelt 

systeem. Als het doel is om jatropha opbrengst te maximaliseren, dan zal de maïs opbrengst lijden, en vice 

versa. Uiteindelijk komt het neer op de opbrengst combinaties van mest, snoeien en plant afstanden die de 

hoogste totale opbrengst per hectare opleveren in relatie tot productiekosten en marktprijzen. De vorm van 

de PPF die in dit onderzoek vastgesteld is, verschilt van de gangbare theorie waarin de boerenpraktijk als 

referentie gebruikt wordt (Hoofdstuk 6). 

 

Ten slotte brengt de algemene discussie de belangrijkste bevindingen, de implicaties en beperkingen daarvan 

samen. Mijn analyse van de jatropha rage en teleurstelling cyclus geeft duidelijk aan dat jatropha zich nu in 

de realiteits fase van deze cyclus bevind. Het is nu belangrijk dat ongeacht welke strategie wordt ontworpen, 

deze in staat moet zijn om energie-ontwikkeling te bevorderen en sociaal-economische condities te 

verbeteren, teneinde het vertrouwen te kweken dat nodig is om jatropha opnieuw te adopteren. De 

biofysische resultaten van deze studie benadrukken de behoefte aan hoog producerende jatropha rassen 

geschikt voor gebieden die niet concurreren met de bestaande voedselgewassen. Productie management 

systemen die commercieel potentieel maximaliseren zullen ook moeten worden ontwikkeld, maar niet ten 

koste van het milieu. Onze jatropha/maïs mengteelt resultaten laten zien dat verschillende 

managementpraktijken zoals kunstmest, snoeien en plantdichtheid concurrentie kunnen verminderen en/of 

complementariteit kunnen verhogen. Veel mensen denken dat als het doel is om jatropha opbrengst te 

maximaliseren, dat dan de maïs opbrengst lijdt, en vice versa, maar dat is misschien niet het volledige 

verhaal. Terwijl de studie gericht was op mengteelt met maïs kunnen er andere, meer geschikte gewassen 

zijn. In wezen is er geen enkele, generieke of zelfs correcte oplossing, dus voor telers om de groei van 

planten en ontwikkeling te maximaliseren met betrekking tot hun locatie en omstandigheden, moeten ze 

begrijpen dat afruil een noodzakelijk onderdeel is van een systeem met meervoudige doelen. In de 

werkelijkheid voor de boeren is het gewoon opbrengst en welke combinaties de hoogste return on investment 

bieden. Ongeacht hoe vaardig de teler is, als het plantmateriaal niet voldoet dan moet een 

veredelingsprogramma flexibel genoeg zijn om verandering op te vangen. Het probleem wordt dan de 

reactietijd. De onzekerheden in oogst en sociale opbrengsten zoals beschreven in onze studie bevestigen dat 

jatropha niet moet worden aanbevolen als een kleine boeren of plantage gewas. Alleen wanneer de 

biofysische en non-biofysische problemen zijn opgelost, zullen we uitzicht hebben op verbeterde 

commerciële jatropha prestaties, sociaal-economische condities en de zorg voor het milieu die bevorderlijk 

voor een succesvolle jatropha biodiesel industrie (Hoofdstuk 7). 
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Beberapa waktu yang lalu tanaman jarak pagar (Jatropha curcas L.) dielu-elukan sebagai ‘miracle plant’ 

sumber biofuel, namun tidak ada dasar ilmiah yang mendukung klaim tersebut. Mayoritas klaim tersebut 

dibangun berdasarkan asumsi optimis bukannya fakta, terutama yang berkaitan dengan hasil panen. Klaim 

bahwa jarak pagar memiliki potensi panen (biji kering) hingga 12 t ha-1 tahun-1 dengan rata-rata panen 5 t ha-

1 tahun-1 pada lahan kritis menyebabkann melambungnya (‘hype’) minat terhadap jarak pagar dan mulainya 

aliran modal usaha serta munculnya berbagai proyek. Namun, faktanya rata-rata panen berkisar 0,1 sampai 1 

atau 2 t ha-1 tahun-1. Akibatnya ‘hype’ jarak pagar akhirnya berubah menjadi kekecewaan (‘disappointment’). 

Meskipun sebelumnya ada peringatan perihal propaganda jarak pagar, namun hal ini tidak dihiraukan justru 

terkubur atau tertutupi oleh besarnya gelombang propaganda. 

 

Pada Bab 2, modifikasi siklus ‘hype’ dan ‘disappointment’ Gartner digunakan untuk menjelaskan bahwa 

melambungnya minat terhadap jarak pagar sudah terjadi berulang kali (hingga beberapa siklus) bahkan sejak 

tahun 1945-50. Pertama kali minat terhadap jarak pagar menurun dikarenakan hilangnya kebutuhan spesifik 

atas kegunaan jarak pagar. Pada siklus kedua dan selanjutnya terdapat kesamaan penyebab turunnya minat 

terhadap jarak pagar, yaitu jarak pagar masih merupakan tanaman baru/liar yang belum dimuliakan. 

Penyebab lainnya yaitu kombinasi berbagai faktor seperti kombinasi daya tarik pasar (yang berhubungan 

dengan kesejahteraan masyarakat, ekonomi, lingkungan, dukungan dari pemerintah berupa mandat, subsidi, 

alokasi lahan penanaman dan investor) serta daya dorong teknologi (yang berhubungan dengan pengolahan 

minyak dan peningkatan nilai tambah untuk produk jarak pagar) yang tidak disiapkan atau dibangun dan 

dikembangkan dalam kerangkan dan pedoman komersial yang realistis. 

 

Berdasarkan penelitian dari tim JARAK di Indonesia yang bertujuan untuk membedakan fakta dari fiksi pada 

pengembangan jarak pagar sebagai tanaman biofuel, maka terlihat jelas bahwa ‘hype’ jarak pagar telah 

ditunggangi oleh berbagai pihak yang memanfaatkan sistem tersebut. Kebijakan pemerintah seringkali 

dipengaruhi oleh jaringan wirausahawan yang memanipulasi proses kebijakan untuk kepentingan pribadi 

atau golongan. Berbagai perusahaan dan lembaga swadaya masyarakat (LSM) mendapatkan akses subsidi 

atau pinjaman dana dari bank dan dana investasi untuk mengembangakan perkebunan besar atau pertanian 

jarak pagar, hingga makelar pun mendapat bagian dari subsidi. Tidak ketinggalan para peneliti juga 

mendapat hibah berbagai dana penelitaan. Lebih jauh, petani kecil yang sebelumnya sering digambarkan 

sebagai korban dari perampasan lahan juga turut serta mengambil keuntungan dari jarak pagar. Oleh karena 

itu tidak mengherankan bahwa jika dikilas balik besarnya gelombang minat pada jarak pagar berujung pada 

kekecewaan. 

 

Disertasi S3 ini mencakup komponen produksi tanaman yang merupakan bagian dari program JARAK. 

Hipotesis disertasi ini adalah pertumbuhan dan produksi jarak dibatasi oleh kurangnya pengertian terhadap 

karakteristik tanaman, sistem tanam, dan manajemen. Tujuan umum disertasi ini yaitu: pertama, memahami 
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faktor biofisik dari alokasi biomassa tajuk dan akar termasuk indeks panen dengan menggunakan model 

pendekatan analisis cabang fungsional (functional branch analysis; FBA) yang memperhitungkan 

arsitektur/percabangan tanaman. Kedua, menggunakan pengetahuan yang diperoleh sebelumnya untuk 

mengevaluasi pertumbuhan dan produksi pada sistem tanam monokultur, tumpang sari, dan pagar, yang 

dikombinasikan dengan perlakuan manajemen. Model simulasi air, hara, penangkapan cahaya dalam sistem 

wanatani (water, nutrient and light capture in agroforestry systems; WaNulCAS) digunakan untuk 

mengevaluasi produktivitas jangka panjang beserta interaksi antara komponen dan fungsi sistem yang 

berbeda, berikut analisa‘trade-off’. 

 

Disertasi ini disusun berdasarkan percobaan lapangan di Indonesia yang dilaksanakan pada tahun 2011 

hingga 2013. Penelitian sistem monokultur dan tumpangsari dipelajari pada tahun 2012 hingga 2013 di Desa 

Mulo, Kecamatan Wonosari, Kabupaten Gunungkidul, Daerah Istimewa Yogyakarta. Penelitian sistem pagar 

dipelajari pada tahun 2011 hingga 2013 di Desa Leseng, Kecamatan Moyo Hulu, Kabupaten Sumbawa 

Besar, Provinsi Nusa Tenggara Barat. 

 

Model FBA digunakan untuk meningkatkan pemahaman kita terhadap kompleksitas dan hubungan antara 

biomassa dan alokasi ke berbagai organ jarak pagar. Berdasarkan pengukuran dengan karakterisasi FBA, 

cabang pembawa buah mempunyai kisaran diameter dari 0,9 cm hingga 1,4 cm (disebut sebagai cabang 

produktif) dan tidak semua cabang berbunga/berbuah. Selain itu jarak pagar mempunyai plastisitas dan 

heterogenitas seperti berbatang pendek dan bercabang lebih dari satu, maka diperlukan penyesuaian terhadap 

model FBA dalam menentukan biomassa tajuk. Akar jarak pagar diduga mempunyai fungsi sebagai tempat 

penyimpanan sehingga terdapat penyimpangan antara biomassa pendugaan dan aktual. Penelitian ini 

menghasilkan beberapa persamaan alometrik yang dapat digunakan untuk menentukan biomassa jarak pagar 

tanpa menggunakan metode sampel destruktif. Berdasarkan kriteria FBA, jarak pagar yang digunakan pada 

penelitian ini dikategorikan sebagai perdu dan bukan pohon. Secara umum penelitian biomassa jarak pagar 

dengan menggunakan model FBA memberikan hasil yang bervariasi tergantung pada kemiripan arsitektur 

tanaman yang digunakan dengan model (Bab 3). 

 

Selanjutnya persamaan alometrik dari model FBA digunakan untuk menentukan biomassa tajuk pada sistem 

monokultur, tumpang sari, dan pagar, sedangkan komponen vegetatif lain dan hasil panen jarak pagar diukur 

secara langsung. Hubungan antara hasil panen dan komponen vegetatif tanaman jarak pagar dikembangkan 

pada sistem tanam yang berbeda yang dikombinasi dengan perlakuan manajemen (seperti pemangkasan tajuk 

dan akar, dan pemberian mulsa dari pangkasan daun jarak). Sistem monokultur menghasilkan panen 

tertinggi, diikuti dengan sistem tumpang sari dan pagar. Variasi pada hasil panen tidak hanya disebabkan 

oleh sistem tanam yang berbeda namun juga disebabkan oleh umur dan perlakuan manajemen yang berbeda. 

Pemangkasan tajuk jarak pagar yang berumur 2 tahun pada sistem monokultur mengurangi hasil panen dari 

109 kg ha-1 menjadi 28 kg ha-1 yang disebabkan oleh penurunan 40 % volume kanopi dan indeks luas daun 

(leaf area index; LAI). Pada sistem tumpang sari, semua tajuk jarak pagar dipangkas pada umur 4 tahun. 
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Selanjutnya pada perlakuan yang akarnya dipangkas serta diberi plastik penghalang akar di antara barisan 

jarak pagar dengan tanaman sela jagung, hasil panen jarak pagar berkurang hingga 80 %. Adanya plastik 

penghalang menghambat akar jarak pagar dalam mengambil air dan unsur hara yang berada pada tanaman 

sela jagung. Tumpang sari jarak pagar tanpa plastik penghalang akar namun diberi mulsa daun jarak 

menghasilkan panen terbesar yaitu 25 kg ha-1. Pada sistem pagar, tinggi tanaman mempengaruhi hasil panen 

jarak pagar. Jarak pagar yang ditanam dalam satu baris dan berumur 1 tahun menghasilkan panen sebesar 

0.97 g m-1 untuk jarak tanam 10 cm, sebesar 1,69 g m-1 untuk jarak tanam 30 cm, dan sebesar 0,14 g m-1 

untuk jarak tanam 20 cm pada jarak pagar yang ditanam berselang-seling dengan gamal (Gliricidia sepium); 

pohon legum pengikat nitrogen. Pemangkasan secara signifikan menurunkan LAI pada jarak tanam 20 cm 

dikarenakan porsi biomassa tajuk lebih banyak dialokasikan untuk pertumbuhan kayu. Hasil panen pada tiga 

sistem tanam menunjukkan bahwa produksi dapat ditentukan berdasarkan tinggi tanaman dan jumlah cabang 

produktif, walaupun ada kemungkinan jumlah bunga majemuk pada setiap cabang produktif dapat menjadi 

faktor penentu. Pemangkasan tajuk hingga tinggi jarak pagar 75 cm mengakibatkan penurunan hasil panen. 

Hal ini mungkin dapat disebabkan oleh interaksi antara genotipe, umur, dan kondisi air/lengas dan hara 

tanah. Ketersediaan air tanah dan penambahan unsur hara mendukung peningkatan panen seperti pada 

percobaan tumpang sari. Pada sistem pagar, untuk meningkatkan hasil panen perlu dipertimbangkan 

penambahan jarak tanam dan manajemen hara tanah (Bab 4). 

 

Interaksi antara jarak pagar dengan jagung dinilai berdasarkan persamaan linear aditif sederhana yaitu 

perbaikan kesuburan tanah ditambah dengan kompetisi air, hara, dan cahaya. Perbaikan kesuburan tanah 

berasal dari penambahan mulsa daun jarak yang dapat meningkatkan kesuburan tanah dan secara tidak 

langsung mengubah mikroklimat akibat berkurangnya penguapan dan suhu tanah. Pengaruh kompetisi jarak 

pagar terhadap jagung pada biomassa tajuk dan akar dapat dikelola melalui pemangkasan tajuk dan akar 

disertai dengan pemberian plastik penghalang akar. Agar kompetisi mempunyai interaksi yang bernilai 

positif maka kesuburan tanah dan curah hujan harus memadai. Hanya saja persamaan di atas tidak mampu 

menilai dua komponen yang berinteraksi pada waktu bersamaan (Bab 5). 

 

Produktivitas jangka panjang jarak pagar dan jagung dieskplorasi selama 20-tahun periode tanam dari jarak 

pagar dengan menggunakan model WaNuLCaS. Hasil panen relatif jarak pagar dan jagung merupakan 

perbandingan hasil panen jarak atau jagung dari tumpang sari dibandingkan dengan hasil panen jarak atau 

jagung dari monokultur. Hasil panen relatif jarak pagar dan jagung dievaluasi dengan kombinasi perlakuan 

pemupukan, pemangkasan, dan jarak tanam. Tumpang sari dinilai dengan kurva kemungkinan produksi 

(production possibility frontier; PPF) pada dua kondisi; hasil panen jagung pada saat hasil panen jarak pagar 

maksimal dan hasil panen jarak pagar pada saat hasil panen jagung maksimal. Pemupukan jagung meliputi 

pemberian mulsa daun pangkasan jarak pagar ditambah dengan 72 kg ha-1 pupuk anorganik P, mulsa daun 

jarak pagar saja, pupuk anorganik N dan P masing-masing sebanyak 40 kg ha-1, beserta tanpa mulsa daun 

pangkasan jarak dan tanpa pupuk anorganik (kontrol). Perlakuan pemangkasan mencakup tidak ada 

pemangkasan, pemangkasan setiap tahun dan dua tahun sekali. Perlakuan jarak tanam meliputi 14 kombinasi 
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yang berasal dari 5 variasi jarak tanam yang berbeda dalam satu baris (yaitu dari 1 m hingga 5 m) dan 4 

variasi jarak tanam yang berbeda antar baris (yaitu dari 2 m hingga 5 m). Perlakuan pemupukan dengan 

mulsa daun pangkasan jarak dengan 72 kg ha-1 pupuk anorgnaik P menghasilkan panen relatif maksimal 

untuk tumpang sari jarak pagar dan jagung. Perlakuan jarak tanam 2 m di dalam baris dengan jarak pagar 

yang tidak dipangkas menghasilkan panen relatif maksimum untuk jarak pagar tumpang sari hingga 250 % 

lebih banyak dibandingkan dengan panen jarak pagar monokultur yang tidak dipupuk, dan ditambah 35 % 

panen jagung. Pemangkasan jarak pagar setiap tahun menghasilkan panen relatif maksimal untuk tanaman 

sela jagung sebesar 101 % dan ditambah dengan hasil panen relatif jarak pagar sebesar 62 %. Variasi jarak 

tanam di dalam baris jarak pagar tidak mempengaruhi hasil panen tanaman sela jagung apabila jarak pagar 

dipangkas setiap tahun. Peluang untuk mengembangkan tumpang sari jarak pagar dan tanaman sela jagung 

timbul apabila faktor manajemen seperti pemupukam, pemangkasan, dan pengaturan jarak tanam 

dipertimbangkan. Perlakuan manajemen yang berbeda dapat mengurangi kompetisi jarak pagar dan tanaman 

sela jagung atau justru meningkatkan efek saling menguntungkan, dan PPF dapat berubah mengikuti 

perubahan prioritas petani. ‘Trade-off’ hasil panen dalam sistem tumpang sari dikarenakan ada beberapa 

sasaran pencapaian hasil panen yang berbeda. Apabila tujuannya untuk memaksimalkan hasil panen jarak 

pagar saja, maka hasil panen jagung akan berkurang, dan sebaliknya. Pertimbangan terakhir akan ditentukan 

berdasarkan hasil panen dengan kombinasi perlakuan pemupukan, pemangkasan, dan jarak tanam yang 

memberikan total pendapatan terbesar per hektar relatif terhadap biaya produksi dan harga pasar. 

Selanjutnya, bentuk PPF yang dihasilkan oleh studi ini berbeda dengan teori umum apabila referensi yang 

digunakan adalah dari praktek petani (Bab 6). 

 

Akhirnya, bab diskusi umum menyatukan temuaan utama, implikasi dan keterbatasan dari studi ini. Tinjauan 

pustaka terhadap ‘hype’ dan ‘disappointment’ menunjukkan bahwa jarak pagar sekarang berada pada fase 

menghadapi kenyataan ‘reality phase’. Kedepannya perlu dipertimbangkan bahwa strategi yang dirancang 

oleh pihak manapun, perlu sepenuhnya mendukung pengembangan di bidang energi dan sosial ekonomi 

sehingga kepercayaan untuk mengadopsi jarak pagar dapat dipulihkan kembali. Hasil biofisik dari studi ini 

menggarisbawahi perlunya pengembangan varietas unggul jarak pagar yang disesuaikan pada kondisi lahan 

setempat tanpa bersaing dengan tanaman pangan yang sudah ada. Sistem manajemen produksi yang 

memaksimalkan potensi komersial juga perlu dikembangkan, namun dengan tidak mengorbankan aspek 

lingkungan. Hasil tumpang sari jarak pagar dan jagung menunjukkan bahwa perlakuan manajemen yang 

berbeda seperti pemupukan, pemangkasan, dan jarak tanam dapat mengurangi kompetisi dan/atau 

meningkatkan pengaruh yang saling menguntungkan. Namun, masalah sebenarnya jauh lebih kompleks 

daripada sekedar memaksimalkan hasil panen jarak pagar atau jagung. Studi ini menggunakan tanaman sela 

jagung meskipun bisa saja diaplikasikan pada tanaman lain yang lebih sesuai. Intinya tidak ada solusi yang 

dapat diberikan kepada para petani sebagai rekomendasi universal untuk memaksimalkan pertumbuhan dan 

hasil panen tanaman yang berlaku pada semua lahan dan kondisi petani, karena selalu ada ‘trade-off’ 

terutama apabila sistem tanam yang digunakan mempunyai beberapa tujuan. Namun, pada akhirnya petani 

akan mempertimbangkan kombinasi perlakuan yang dapat memberikan keuntungan maksimal. Terlepas dari 
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keterampilan yang dimiliki oleh petani, apabila benih/bibit/bahan tanam yang digunakan tidak 

menguntungkan maka pemuliaan tanaman seharusnya cukup fleksibel untuk mengakomodasi perubahan 

yang ada. Masalahnya respon perubahan pada pemuliaan tanaman memerlukan waktu yang lama. 

 

Ketidakpastian hasil panen dan manfat sosial yang dipaparkan pada studi ini menegaskan bahwa jarak pagar 

seharusnya tidak dipromosikan kepada petani dan sebagai tanaman perkebunan. Apabila permasalahan 

biofisik dan non-biofisik telah ditanggulangi seperti peningkatan hasil panen komersial dan kondisi sosial 

ekonomi serta lingkungan, maka pengembangan industri biodiesel jarak pagar akan menjadi kondusif (Bab 

7). 
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